scholarly journals Analysis of Weldment by Using Finite Element Method(1) - Heat Flow in Weldment -

2011 ◽  
Vol 29 (2) ◽  
pp. 4-6
Author(s):  
Young-Soo Yang ◽  
Jae-Woong Kim
2012 ◽  
Vol 37 (13) ◽  
pp. 10028-10035 ◽  
Author(s):  
B. Bulfin ◽  
B.E. Murphy ◽  
O. Lübben ◽  
S.A. Krasnikov ◽  
I.V. Shvets

2021 ◽  
Author(s):  
Johanna Blöcher ◽  
Petr Mayer ◽  
Michal Kuraz

<p>An accurate representation of freezing and thawing in soil covers many applications including simulation of land surface processes, hydrology, and degrading permafrost. Freezing and thawing tightly couple water and heat flow, where temperature and temperature gradients influence the water flow and phase changes, and water content and flow influence the heat transport. In most porous media, the interface between liquid and frozen water is not sharp and a slushy zone is present. A common observation of freezing soil is water accumulation towards the freezing front due to Cryosuction. A mathematical model can be derived using the Clausius-Clapeyron equation, which allows the derivation of a soil freezing curve relating temperature to pressure head. This is based on the assumption that soil freezing is similar to soil drying.</p><p>Many models still lack features such as Cryosuction. We believe that this may be due to numerical issues that model developers face with their current solver and discretization setup. Implementing freezing soil accurately is not straight-forward. Using the Clausius-Clapeyron creates a discontinuity in the freezing rate and latent heat at the freezing point and little attention has been paid to the adequate description of their numerical treatment and computational challenges. Discretizing this discontinuous system with standard finite element methods (standard Galerkin type) can cause spurious oscillations because the standard finite element method uses continuous base/shape functions that are incapable of handling discontinuity of any kind within an element. Similarly, standard finite difference methods are also not capable of handling discontinuities. In this contribution, we present the application of regularization of the discontinuous term, which allows the use of the standard finite element method. We implemented the model in the open-source code base DRUtES (www.drutes.org). We verify this approach on synthetic and various real freezing soil column experiments conducted by Jame (1977) and Mizoguchi (1990).</p><p>Jame, Y.-W., Norum, D.I., 1980. Heat and mass transfer in a freezing unsaturated porous medium. Water Resources Research 16, 811–819. https://doi.org/10.1029/WR016i004p00811</p><p>Mizoguchi, M., 1990. Water, heat and salt transport in freezing soil. sensible and latent heat flow in a partially frozen unsaturated soil. University of Tokyo.</p><p> </p>


2018 ◽  
Vol 28 (7) ◽  
pp. 1506-1538 ◽  
Author(s):  
Pratibha Biswal ◽  
Tanmay Basak

Purpose This paper is aimed to study natural convection in enclosures with curved (concave and convex) side walls for porous media via the heatline-based heat flow visualization approach. Design/methodology/approach The numerical scheme involving the Galerkin finite element method is used to solve the governing equations for several Prandtl numbers (Prm) and Darcy numbers (Dam) at Rayleigh number, Ram = 106, involving various wall curvatures. Finite element method is advantageous for curved domain, as the biquadratic basis functions can be used for adaptive automated mesh generation. Findings Smooth end-to-end heatlines are seen at the low Dam involving all the cases. At the high Dam, the intense heatline cells are seen for the Cases 1-2 (concave) and Cases 1-3 (convex). Overall, the Case 1 (concave) offers the largest average Nusselt number ( Nur¯) at the low Dam for all Prm. At the high Dam, Nur¯ for the Case 1 (concave) is the largest involving the low Prm, whereas Nur¯ is the largest for Case 1 (convex) involving the high Prm. Practical implications Thermal management for flow systems involving curved surfaces which are encountered in various practical applications may be complicated. The results of the current work may be useful for the material processing, thermal storage and solar heating applications Originality/value The heatline approach accompanied by energy flux vectors is used for the first time for the efficient heat flow visualization during natural convection involving porous media in the curved walled enclosures involving various wall curvatures.


Nanoscale ◽  
2019 ◽  
Vol 11 (43) ◽  
pp. 20868-20875 ◽  
Author(s):  
Junxiong Guo ◽  
Yu Liu ◽  
Yuan Lin ◽  
Yu Tian ◽  
Jinxing Zhang ◽  
...  

We propose a graphene plasmonic infrared photodetector tuned by ferroelectric domains and investigate the interfacial effect using the finite element method.


Sign in / Sign up

Export Citation Format

Share Document