scholarly journals Nonlinear Maps between Besov and Sobolev spaces

2010 ◽  
Vol 19 (1) ◽  
pp. 105-120
Author(s):  
Philip Brenner ◽  
Peter Kumlin
Author(s):  
D. E. Edmunds ◽  
W. D. Evans

This chapter presents a selection of some of the most important results in the theory of Sobolev spacesn. Special emphasis is placed on embedding theorems and the question as to whether an embedding map is compact or not. Some results concerning the k-set contraction nature of certain embedding maps are given, for both bounded and unbounded space domains: also the approximation numbers of embedding maps are estimated and these estimates used to classify the embeddings.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Thomas Eiter ◽  
Mads Kyed

AbstractThe equations governing the flow of a viscous incompressible fluid around a rigid body that performs a prescribed time-periodic motion with constant axes of translation and rotation are investigated. Under the assumption that the period and the angular velocity of the prescribed rigid-body motion are compatible, and that the mean translational velocity is non-zero, existence of a time-periodic solution is established. The proof is based on an appropriate linearization, which is examined within a setting of absolutely convergent Fourier series. Since the corresponding resolvent problem is ill-posed in classical Sobolev spaces, a linear theory is developed in a framework of homogeneous Sobolev spaces.


Author(s):  
Jennifer Duncan

AbstractThe Brascamp–Lieb inequalities are a very general class of classical multilinear inequalities, well-known examples of which being Hölder’s inequality, Young’s convolution inequality, and the Loomis–Whitney inequality. Conventionally, a Brascamp–Lieb inequality is defined as a multilinear Lebesgue bound on the product of the pullbacks of a collection of functions $$f_j\in L^{q_j}(\mathbb {R}^{n_j})$$ f j ∈ L q j ( R n j ) , for $$j=1,\ldots ,m$$ j = 1 , … , m , under some corresponding linear maps $$B_j$$ B j . This regime is now fairly well understood (Bennett et al. in Geom Funct Anal 17(5):1343–1415, 2008), and moving forward there has been interest in nonlinear generalisations, where $$B_j$$ B j is now taken to belong to some suitable class of nonlinear maps. While there has been great recent progress on the question of local nonlinear Brascamp–Lieb inequalities (Bennett et al. in Duke Math J 169(17):3291–3338, 2020), there has been relatively little regarding global results; this paper represents some progress along this line of enquiry. We prove a global nonlinear Brascamp–Lieb inequality for ‘quasialgebraic’ maps, a class that encompasses polynomial and rational maps, as a consequence of the multilinear Kakeya-type inequalities of Zhang and Zorin-Kranich. We incorporate a natural affine-invariant weight that both compensates for local degeneracies and yields a constant with minimal dependence on the underlying maps. We then show that this inequality generalises Young’s convolution inequality on algebraic groups with suboptimal constant.


Author(s):  
André Guerra ◽  
Lukas Koch ◽  
Sauli Lindberg

AbstractWe study existence and regularity of solutions to the Dirichlet problem for the prescribed Jacobian equation, $$\det D u =f$$ det D u = f , where f is integrable and bounded away from zero. In particular, we take $$f\in L^p$$ f ∈ L p , where $$p>1$$ p > 1 , or in $$L\log L$$ L log L . We prove that for a Baire-generic f in either space there are no solutions with the expected regularity.


2020 ◽  
Vol 32 (4) ◽  
pp. 995-1026
Author(s):  
Carme Cascante ◽  
Joaquín M. Ortega

AbstractIn this paper, we show that if {b\in L^{2}(\mathbb{R}^{n})}, then the bilinear form defined on the product of the non-homogeneous Sobolev spaces {H_{s}^{2}(\mathbb{R}^{n})\times H_{s}^{2}(\mathbb{R}^{n})}, {0<s<1}, by(f,g)\in H_{s}^{2}(\mathbb{R}^{n})\times H_{s}^{2}(\mathbb{R}^{n})\to\int_{% \mathbb{R}^{n}}(\mathrm{Id}-\Delta)^{\frac{s}{2}}(fg)(\mathbf{x})b(\mathbf{x})% \mathop{}\!d\mathbf{x}is continuous if and only if the positive measure {\lvert b(\mathbf{x})\rvert^{2}\mathop{}\!d\mathbf{x}} is a trace measure for {H_{s}^{2}(\mathbb{R}^{n})}.


Sign in / Sign up

Export Citation Format

Share Document