scholarly journals Dirichlet and Neumann boundary values of solutions to higher order elliptic equations

2019 ◽  
Vol 69 (4) ◽  
pp. 1627-1678 ◽  
Author(s):  
Ariel Barton ◽  
Steve Hofmann ◽  
Svitlana Mayboroda
2018 ◽  
Vol 40 (2) ◽  
pp. 976-1004 ◽  
Author(s):  
Matthew J Colbrook

Abstract We provide the first significant extension of the unified transform (also known as the Fokas method) applied to elliptic boundary value problems, namely, we extend the method to curvilinear polygons and partial differential equations (PDEs) with variable coefficients. This is used to solve the generalized Dirichlet-to-Neumann map. The central component of the unified transform is the coupling of certain integral transforms of the given boundary data and of the unknown boundary values. This has become known as the global relation and, in the case of constant coefficient PDEs, simply links the Fourier transforms of the Dirichlet and Neumann boundary values. We extend the global relation to PDEs with variable coefficients and to domains with curved boundaries. Furthermore, we provide a natural choice of global relations for separable PDEs. These generalizations are numerically implemented using a method based on Chebyshev interpolation for efficient and accurate computation of the integral transforms that appear in the global relation. Extensive numerical examples are provided, demonstrating that the method presented in this paper is both accurate and fast, yielding exponential convergence for sufficiently smooth solutions. Furthermore, the method is straightforward to use, involving just the construction of a simple linear system from the integral transforms, and does not require knowledge of Green’s functions of the PDE. Details on the implementation are discussed at length.


2019 ◽  
Vol 19 (2) ◽  
pp. 391-412
Author(s):  
Uriel Kaufmann ◽  
Humberto Ramos Quoirin ◽  
Kenichiro Umezu

AbstractWe establish the existence of loop type subcontinua of nonnegative solutions for a class of concave-convex type elliptic equations with indefinite weights, under Dirichlet and Neumann boundary conditions. Our approach depends on local and global bifurcation analysis from the zero solution in a nonregular setting, since the nonlinearities considered are not differentiable at zero, so that the standard bifurcation theory does not apply. To overcome this difficulty, we combine a regularization scheme with a priori bounds, and Whyburn’s topological method. Furthermore, via a continuity argument we prove a positivity property for subcontinua of nonnegative solutions. These results are based on a positivity theorem for the associated concave problem proved by us, and extend previous results established in the powerlike case.


1994 ◽  
Vol 25 (3) ◽  
pp. 267-278
Author(s):  
HSU-TUNG KU ◽  
MEI-CHIN KU ◽  
XIN-MIN ZHANG

In this paper, we obtain good lower bound estimates of eigenvalues for various Dirichlet eigenvalue problems of higher order elliptic equations on bounded domains in $\mathbb{R}^n$.


Sign in / Sign up

Export Citation Format

Share Document