Spatial Distribution Characteristics of Rocky Desertification in Qiandongnan Prefecture of Guizhou Province

2017 ◽  
Vol 8 (4) ◽  
pp. 422-432
Author(s):  
Dou Hongtao ◽  
Zhen Lin ◽  
Li Haiping
2012 ◽  
Vol 24 (5) ◽  
pp. 789-796 ◽  
Author(s):  
WANG Jingfu ◽  
◽  
CHEN Jing'an ◽  
ZENG Yan ◽  
YANG Yongqiong ◽  
...  

Author(s):  
Xingfu Wang ◽  
Xianfei Huang ◽  
Jiwei Hu ◽  
Zhenming Zhang

Karst landforms are widely distributed in Guizhou Province, and the karst terrain is complex. To investigate the spatial distribution characteristics of soil organic carbon (SOC) in topsoil in different karst landforms, a total of 920 samples were taken from different karst landforms. The study areas, Puding, Xingyi, Guanling, Libo and Yinjiang in Guizhou Province, represent the karst plateau (KP), karst peak-cluster depression (KPCD), karst canyon (KC), karst virgin forest (KVF) and karst trough valley (KTV) landforms, respectively. The characteristics of the SOC contents in areas with different vegetation, land use and soil types under different karst landforms were analyzed. The dimensionality of the factors was reduced via principal component analysis, the relationships among SOC content and different factors were subjected to redundancy analysis, and the effects of the main impact factors on SOC were discussed. The results showed that there was a large discrepancy in the SOC contents in the topsoil layers among different types of karst landforms, the changes in the SOC content in the topsoil layer were highly variable, and the discrepancy in the upper soil layer was higher than that in the lower soil layer. The SOC contents in the 0–50 cm topsoil layers in different karst landforms were between 7.76 and 38.29 g·kg−1, the SOC content gradually decreased with increasing soil depth, and the descending order of the SOC contents in different karst landforms was KTV > KVF > KC > KPCD > KP.


Forests ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 28
Author(s):  
Xingfu Wang ◽  
Xianfei Huang ◽  
Kangning Xiong ◽  
Jiwei Hu ◽  
Zhenming Zhang ◽  
...  

To study the spatial distribution characteristics of soil organic carbon (SOC) coupled with rocky desertification, 1212 soil samples from 152 soil profiles were sampled from different karst landforms, including karst low hills/virgin forest (KLH) in Libo County, a karst peak-cluster depression (KPCD) in Xingyi County, a karst canyon (KC) in Guanling County, a karst plateau basin (KPB) in Puding County and a karst trough valley (KTV) in Yinjiang County. The spatial distribution characteristics of the responses of SOC, SOC density (SOCD), rocky desertification and soil bulk density (SBD) to different influencing factors were analyzed. The relationships among SOC, SOCD, rocky desertification and SBD were analyzed using Pearson correlation analysis. The SOC storage capacity was characterized by using SOCD, and then the SOC storage capacity in different evolution stages of karst landforms was assessed. The SOC contents of KLH, KPCD, KC, KPB and KTV ranged from 6.16 to 38.20 g·kg−1, 7.42 to 27.08 g·kg−1, 6.28 to 35.17 g·kg−1, 4.62 to 23.79 g·kg−1 and 5.24 to 37.85 g·kg−1, respectively, and their average SOCD values (0–100 cm) were 7.37, 10.79, 7.06, 8.51 and 7.84 kg·m−2, respectively. The karst landforms as ordered by SOC storage capacity were KPCD > KPB > KLH > KTV > KC. The SOC content was negatively correlated with the SBD; light rocky desertification may lead to SOC accumulation. The rocky desertification degree and SBD were closely associated with slope position and gradient. Rocky desertification first increased, then decreased from mountain foot to summit, and increased with increasing slope gradient. However, the SBD decreased from mountain foot to summit and with increasing slope gradient. The SOC contents on the northern aspect of the mountains were generally higher than the other aspects. In summary, rock outcrops controlled the SOC contents in the studied regions. The slope position, gradient and aspect influenced the composition and distribution of vegetation, which influenced the evolution of rocky desertification. Therefore, these factors indirectly affected the SOC content. Additionally, the SOCD decreased with increasing rocky desertification. During the different evolution stages of karst landforms, the SOC storage capacity first decreases, then increases.


2021 ◽  
Vol 13 (1) ◽  
pp. 796-806
Author(s):  
Zhen Shuo ◽  
Zhang Jingyu ◽  
Zhang Zhengxiang ◽  
Zhao Jianjun

Abstract Understanding the risk of grassland fire occurrence associated with historical fire point events is critical for implementing effective management of grasslands. This may require a model to convert the fire point records into continuous spatial distribution data. Kernel density estimation (KDE) can be used to represent the spatial distribution of grassland fire occurrences and decrease the influences historical records in point format with inaccurate positions. The bandwidth is the most important parameter because it dominates the amount of variation in the estimation of KDE. In this study, the spatial distribution characteristic of the points was considered to determine the bandwidth of KDE with the Ripley’s K function method. With high, medium, and low concentration scenes of grassland fire points, kernel density surfaces were produced by using the kernel function with four bandwidth parameter selection methods. For acquiring the best maps, the estimated density surfaces were compared by mean integrated squared error methods. The results show that Ripley’s K function method is the best bandwidth selection method for mapping and analyzing the risk of grassland fire occurrence with the dependent or inaccurate point variable, considering the spatial distribution characteristics.


Sign in / Sign up

Export Citation Format

Share Document