scholarly journals On lifts of some projectable vector fields associated to a product preserving gauge bundle functor on vector bundles

2014 ◽  
pp. 161-169 ◽  
Author(s):  
A. Ntyam ◽  
G. F. Wankap Nono ◽  
Bitjong Ndombol
Author(s):  
Eckhard Meinrenken ◽  
Jeffrey Pike

Abstract Given a double vector bundle $D\to M$, we define a bigraded bundle of algebras $W(D)\to M$ called the “Weil algebra bundle”. The space ${\mathcal{W}}(D)$ of sections of this algebra bundle ”realizes” the algebra of functions on the supermanifold $D[1,1]$. We describe in detail the relations between the Weil algebra bundles of $D$ and those of the double vector bundles $D^{\prime},\ D^{\prime\prime}$ obtained from $D$ by duality operations. We show that ${\mathcal{V}\mathcal{B}}$-algebroid structures on $D$ are equivalent to horizontal or vertical differentials on two of the Weil algebras and a Gerstenhaber bracket on the 3rd. Furthermore, Mackenzie’s definition of a double Lie algebroid is equivalent to compatibilities between two such structures on any one of the three Weil algebras. In particular, we obtain a ”classical” version of Voronov’s result characterizing double Lie algebroid structures. In the case that $D=TA$ is the tangent prolongation of a Lie algebroid, we find that ${\mathcal{W}}(D)$ is the Weil algebra of the Lie algebroid, as defined by Mehta and Abad–Crainic. We show that the deformation complex of Lie algebroids, the theory of IM forms and IM multi-vector fields, and 2-term representations up to homotopy all have natural interpretations in terms of our Weil algebras.


2012 ◽  
Vol 09 (07) ◽  
pp. 1250061 ◽  
Author(s):  
ESMAEIL PEYGHAN ◽  
AKBAR TAYEBI ◽  
CHUNPING ZHONG

Recently the third author studied horizontal Laplacians in real Finsler vector bundles and complex Finsler manifolds. In this paper, we introduce a class of g-natural metrics Ga,b on the tangent bundle of a Finsler manifold (M, F) which generalizes the associated Sasaki–Matsumoto metric and Miron metric. We obtain the Weitzenböck formula of the horizontal Laplacian associated to Ga,b, which is a second-order differential operator for general forms on tangent bundle. Using the horizontal Laplacian associated to Ga,b, we give some characterizations of certain objects which are geometric interest (e.g. scalar and vector fields which are horizontal covariant constant) on the tangent bundle. Furthermore, Killing vector fields associated to Ga,b are investigated.


2018 ◽  
Vol 62 (3) ◽  
pp. 623-641
Author(s):  
Bin Shen

AbstractIn this paper, we investigate the holomorphic sections of holomorphic Finsler bundles over both compact and non-compact complete complex manifolds. We also inquire into the holomorphic vector fields on compact and non-compact complete complex Finsler manifolds. We get vanishing theorems in each case according to different certain curvature conditions. This work can be considered as generalizations of the classical results on Kähler manifolds and hermitian bundles.


2019 ◽  
Vol 70 (3) ◽  
pp. 1039-1089 ◽  
Author(s):  
Chiara Esposito ◽  
Luca Vitagliano ◽  
Alfonso Giuseppe Tortorella

Abstract VB-groupoids and algebroids are vector bundle objects in the categories of Lie groupoids and Lie algebroids, respectively, and they are related via the Lie functor. VB-groupoids and algebroids play a prominent role in Poisson and related geometries. Additionally, they can be seen as models for vector bundles over singular spaces. In this paper we study their infinitesimal automorphisms, i.e. vector fields on them generating a flow by diffeomorphisms preserving both the linear and the groupoid/algebroid structures. For a special class of VB-groupoids/algebroids coming from representations of Lie groupoids/algebroids, we prove that infinitesimal automorphisms are the same as multiplicative sections of a certain derivation VB-groupoid/algebroid.


Sign in / Sign up

Export Citation Format

Share Document