scholarly journals LITOFACIÁLNÍ ANALÝZA BÁZE HRADECKO-KYJOVICKÉHO SOUVRSTVÍ (NÍZKÝ JESENÍK, MORAVSKOSLEZSKÁ JEDNOTKA ČESKÉHO MASIVU)

2014 ◽  
Vol 21 (1-2) ◽  
Author(s):  
Aleš Novák ◽  
Tomáš Lehotský

A detailed field facies and ichnofacies analysis undertaken in the eastern part of the Nízký Jesník Mts. revealed that the basal part of Hradec-Kyjovice Formation of Upper Viséan age corresponded to coarse-grained siliciclastic turbidite system. Research was focused on detailed measurement of fifteen outcrops in the area. The formation was deposited in deep water environmental of the foreland basin by sediment gravity flows. Five facies were identified in the Hradec Member of the Hradec-Kyjovice Formation: conglomerate facies, pebble to coarse grained sandstone facies, coarse grained sandstone facies, sandstone-siltstone facies and the muddy siltstone facies. The conglomerate facies, pebble to coarse grained sandstone facies and coarse grained sandstone facies represent proximal, coarse grained channel deposits of high-density turbidite currents. The sandstone-siltstone sediments consist of a variety of turbidites deposites in lobes and interchannel environments. The muddy siltstone facies were deposited in interchannel environments by lowdensity turbidite currents. Some depositional lobes contain trace fossils of the Nereites ichnofacies. Sedimentary record of the basal parts of the Hradec-Kyjovice Formation indicates a Late Viséan a change in the development of Culm basin in Upper Viséan and beginning of new sedimentary cycle of sedimentation governed presumably by a compressional tectonic pulse.

1990 ◽  
Vol 27 (1) ◽  
pp. 14-26 ◽  
Author(s):  
Sheila R. Stenzel ◽  
Ian Knight ◽  
Noel P. James

Carbonates of the Table Head Group and associated strata were deposited along the western margin of a foreland basin during initial stages of the Taconian Orogeny and record collapse and cannibalization of a long-lived carbonate platform. The stratigraphy of Klappa, Opalinski, and James is here revised to reflect better understanding of lithologic units within this complex tectono-stratigraphic assemblage. The Table Head Group now contains only three formations: the Table Point and Table Cove formations, as originally defined, and the Cape Cormorant Formation, redefined and restricted to western Port au Port Peninsula. Black Cove Formation shales are removed from the Table Head. Distinctive conglomerates once placed in the Cape Cormorant are now recognized as separate units within the overlying flysch and called the Daniel's Harbour Member.The foreland basin developed in three stages: (1) fragmentation, uplift, and erosion of the platform and subsequent deposition of shallow-water limestones (Table Point) on a tectonically unstable shelf; (2) foundering of platform blocks and deposition of deep-water-slope carbonates (Table Cove), basinal black shales (Black Cove), or conglomerates of older shelf carbonates shed from submarine cliffs (Cape Cormorant); and (3) siliciclastic sedimentation interrupted by sediment gravity flows of Table Head clasts shed from submarine escarpments (Daniel's Harbour).


1988 ◽  
Vol 62 (01) ◽  
pp. 1-8 ◽  
Author(s):  
Ronald E. Martin

The utility of benthic foraminifera in bathymetric interpretation of clastic depositional environments is well established. In contrast, bathymetric distribution of benthic foraminifera in deep-water carbonate environments has been largely neglected. Approximately 260 species and morphotypes of benthic foraminifera were identified from 12 piston core tops and grab samples collected along two traverses 25 km apart across the northern windward margin of Little Bahama Bank at depths of 275-1,135 m. Certain species and operational taxonomic groups of benthic foraminifera correspond to major near-surface sedimentary facies of the windward margin of Little Bahama Bank and serve as reliable depth indicators. Globocassidulina subglobosa, Cibicides rugosus, and Cibicides wuellerstorfi are all reliable depth indicators, being most abundant at depths >1,000 m, and are found in lower slope periplatform aprons, which are primarily comprised of sediment gravity flows. Reef-dwelling peneroplids and soritids (suborder Miliolina) and rotaliines (suborder Rotaliina) are most abundant at depths <300 m, reflecting downslope bottom transport in proximity to bank-margin reefs. Small miliolines, rosalinids, and discorbids are abundant in periplatform ooze at depths <300 m and are winnowed from the carbonate platform. Increased variation in assemblage diversity below 900 m reflects mixing of shallow- and deep-water species by sediment gravity flows.


2019 ◽  
Vol 7 (1) ◽  
pp. 5 ◽  
Author(s):  
Svetlana Kostic ◽  
Daniele Casalbore ◽  
Francesco Chiocci ◽  
Jörg Lang ◽  
Jutta Winsemann

Upper-flow-regime bedforms and their role in the evolution of marine and lacustrine deltas are not well understood. Wave-like undulations on delta foresets are by far the most commonly reported bedforms on deltas and it will take time before many of these features get identified as upper-flow-regime bedforms. This study aims at: (1) Providing a summary of our knowledge to date on deltaic bedforms emplaced by sediment gravity flows; (2) illustrating that these features are most likely transitional upper-flow-regime bedforms; and (3) using field case studies of two markedly different deltas in order to examine their role in the evolution of deltas. The study combines numerical analysis with digital elevation models, outcrop, borehole, and high-resolution seismic data. The Mazzarrà river delta in the Gulf of Patti, Italy, is selected to show that upper-flow-regime bedforms in gullies can be linked to the onset, growth, and evolution of marine deltas via processes of gully initiation, filling, and maintenance. Ice-marginal lacustrine deltas in Germany are selected as they illustrate the importance of unconfined upper-flow-regime bedforms in the onset and evolution of distinct delta morphologies under different lake-level trends.


2016 ◽  
Vol 77 ◽  
pp. 1163-1176 ◽  
Author(s):  
Owen A. Anfinson ◽  
Marco G. Malusà ◽  
Giuseppe Ottria ◽  
Laura N. Dafov ◽  
Daniel F. Stockli

Sign in / Sign up

Export Citation Format

Share Document