Effects of climate change and ecological restoration on carbonate rock weathering carbon sequestration in the karst valley of Southwest China

2019 ◽  
Vol 39 (16) ◽  
Author(s):  
李汇文 LI Huiwen ◽  
王世杰 WANG Shijie ◽  
白晓永 BAI Xiaoyong ◽  
操玥 CAO Yue ◽  
田义超 TIAN Yichao ◽  
...  
2021 ◽  
Author(s):  
Lianbin Cai ◽  
Xi Chen ◽  
Zhicai Zhang

<p>In carbonate rock regions, the bedrock compositions strongly influence regolith properties that, in turn, might play the primary role in plant growth and hydrological processes. Since bedrock experiences uneven weathering processes due to different regolith materials in a karst area, how hydrological functions of bedrock layer and overlying vegetation rely on the bedrock weathering degree is seldom investigated. The objectives of this study are to quantify the impacts of climate change and reforestation on runoff in a watershed with two main bedrocks (dissolvable carbonate rock in karst area and detrital rock in non-karst area) in southwest China. The analyses are firstly executed by decomposion of the hydro-meteorological series into two series (T1, 1992-2003 and T2, 2004-2015), which have different hydro-meteorological responses due to reforestation. This study investigates the impacts of climate change and reforestation on runoff using two approaches: the sensitivity-based approach (Budyko hypothesis) is applied to estimate the overall watershed change in runoff attributed to human activities and climate change, and a distributed hydrological model based on simple soil water balance routing is used to estimate change in runoff and hydrographs in the two main bedrock areas. The results show that the hydrological modelling overestimates climate induced decrease of streamflow (88.6%), compared to estimated result by the Budyko formula (76.6%). The decrease of mean precipitation from T1 to T2 in the non-carbonate area is very close to the carbonate area, the proportion of the climate change induced decrease of streamflow in the non-carbonate area (86.3%) is less than the carbonate area (90.5%), indicating that the drier climate tendency takes a greater effect on decrease of streamflow in the carbonate area than the non-carbonate area. By contrast, there is a greater alteration of land cover/use in the non-carbonate area than the carbonate area. These findings will help develop a better understanding of the impact of climate change and reforestation on runoff in southwest China.</p>


2021 ◽  
Vol 232 (5) ◽  
Author(s):  
Dipankar Deb ◽  
Mary Jamatia ◽  
Jaba Debbarma ◽  
Jitendra Ahirwal ◽  
Sourabh Deb ◽  
...  

2013 ◽  
Vol 59 ◽  
pp. 92-99 ◽  
Author(s):  
Fredrich Kahrl ◽  
Yufang Su ◽  
Timm Tennigkeit ◽  
Andreas Wilkes ◽  
Jianchu Xu ◽  
...  

2018 ◽  
Vol 41 (4) ◽  
pp. 397-402
Author(s):  
Tanuja Gahlot ◽  
◽  
Prachi Joshi ◽  
Y.S. Rawat ◽  
◽  
...  

The ability of forests in atmospheric carbon sequestration is increasingly gaining attention. Present study deals with the estimation of biomass and carbon stock of the teak plantation in the terai central forest division in Kumaun, Uttarakhand State of India. Very few scientific studies were done regarding the teak plantation and the estimation of its biomass in Kumaun. Therefore this study was carried out in this region to assess the role played by teak plantation in climate change. The information regarding the changes in pattern of carbon storage is vital and important because it can be used by government and policymakers to predict the deposit pattern for changing climate. Three sites i.e., Kamola block (Site I), Kamola beat (Site II) and East Gadappu beat (Site III) were selected for the study. Large scale variations in biomass and carbon stock were noted among all three sites. Site III (East Gadappu) showed the maximum biomass and carbon stock (297.03 tha-1 and 143.18 tha-1) followed by site I (Kamola block) (241.9 tha -1and 117.27 t ha-1) and site II ( Kamola beat ) (175.76 t ha-1and 85.79 t ha-1). Although stand density and total basal area of the forest showed almost similar value on all three sites, still the differences in biomass and carbon stock at all sites indicated the positive contribution of biodiversity as shown in the results and negative implications of human disturbance to the forest.


Author(s):  
Dr. Nidhi Chaturvedi, ◽  

The carbon sequestration potential of an unmanaged and previously unstudied Acacia catechu in the Mukundara National Park Rajasthan, by estimating the total aboveground biomass contained in the forest. It turned into observed that the biomass, above ground comprising of stems, branches, and foliage, holds a total of 200 tons per hectare, foremost to a valued 100 tons of carbon being deposited per hectare aboveground. Acacia species consequently has the potential to play a significant function within the mitigation of climate change. The relation among the biomass, M, of each component (stems, branches, and foliage) and the diameter d, of the plant become also studied, by means of fitting allometric equations of the form M = αdβ. It was observed that all components fit this power law relation very well (R2 > 0.7), chiefly the stems (R2 > 0.8) and branches (R2 > 0.9) for which the relation is found to be almost linear.


Author(s):  
Sandeep K. Malyan ◽  
Amit Kumar ◽  
Shahar Baram ◽  
Jagdeesh Kumar ◽  
Swati Singh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document