scholarly journals 2D-Span Resampling of Bi-RRT in Dynamic Path Planning

2015 ◽  
Vol 4 (4) ◽  
pp. 39-48 ◽  
Author(s):  
Lin Hsien-I
IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 19632-19638
Author(s):  
Lisang Liu ◽  
Jinxin Yao ◽  
Dongwei He ◽  
Jian Chen ◽  
Jing Huang ◽  
...  

2011 ◽  
Vol 142 ◽  
pp. 12-15
Author(s):  
Ping Feng

The paper puts forward the dynamic path planning algorithm based on improving chaos genetic algorithm by using genetic algorithms and chaos search algorithm. In the practice of navigation, the algorithm can compute at the best path to meet the needs of the navigation in such a short period of planning time. Furthermore,this algorithm can replan a optimum path of the rest paths after the traffic condition in the sudden.


2021 ◽  
Vol 13 (6) ◽  
pp. 3194
Author(s):  
Fang Zong ◽  
Meng Zeng ◽  
Yang Cao ◽  
Yixuan Liu

Path planning is one of the most important aspects for ambulance driving. A local dynamic path planning method based on the potential field theory is presented in this paper. The potential field model includes two components—repulsive potential and attractive potential. Repulsive potential includes road potential, lane potential and obstacle potential. Considering the driving distinction between an ambulance and a regular vehicle, especially in congested traffic, an adaptive potential function for a lane line is constructed in association with traffic conditions. The attractive potential is constructed with target potential, lane-velocity potential and tailgating potential. The design of lane-velocity potential is to characterize the influence of velocity on other lanes so as to prevent unnecessary lane-changing behavior for the sake of time-efficiency. The results obtained from simulation demonstrate that the proposed method yields a good performance for ambulance driving in an urban area, which can provide support for designing an ambulance support system for the ambulance personnel and dispatcher.


Author(s):  
Songhao Jia ◽  
Cai Yang ◽  
Xing Chen ◽  
Yan Liu ◽  
Fangfang Li

Background: In the applications of wireless sensor network technology, three-dimensional node location technology is crucial. The process of node localization has some disadvantages, such as the uneven distribution of anchor nodes and the high cost of the network. Therefore, the mobile anchor nodes are introduced to effectively solve accurate positioning. Objective: Considering the estimated distance error, the received signal strength indication technology is used to optimize the measurement of the distance. At the same time, dynamic stiffness planning is introduced to increase virtual anchor nodes. Moreover, the bird swarm algorithm is also used to solve the optimal location problem of nodes. Method: Firstly, the dynamic path is introduced to increase the number of virtual anchor nodes. At the same time, the improved RSSI distance measurement technology is introduced to the node localization. Then, an intelligent three-dimensional node localization algorithm based on dynamic path planning is proposed. Finally, the proposed algorithm is compared with similar algorithms through simulation experiments. Results: Simulation results show that the node coordinates obtained by the proposed algorithm are more accurate, and the node positioning accuracy is improved. The execution time and network coverage of the algorithm are better than similar algorithms. Conclusion: The proposed algorithm significantly improves the accuracy of node positioning. However, the traffic of the algorithm is increased. A little increase in traffic in exchange for positioning accuracy is worthy of recognition. The simulation results show that the proposed algorithm is robust and can be implemented and promoted in the future.


Sign in / Sign up

Export Citation Format

Share Document