repulsive potential
Recently Published Documents


TOTAL DOCUMENTS

174
(FIVE YEARS 24)

H-INDEX

27
(FIVE YEARS 1)

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7495
Author(s):  
Cezary Kownacki ◽  
Leszek Ambroziak

The ability of autonomous flight with obstacle avoidance should be a fundamental feature of all modern unmanned aerial vehicles (UAVs). The complexity and difficulty of such a task, however, significantly increase in cases combining moving obstacles and nonholonomic UAVs. Additionally, since they assume the symmetrical distribution of repulsive forces around obstacles, traditional repulsive potential fields are not well suited for nonholonomic vehicles. The limited maneuverability of these types of UAVs, including fixed-wing aircraft, requires consideration not only of their relative position, but also their speed as well as the direction in which the obstacles are moving. To address this issue, the following work presents a novel multidimensional repulsive potential field dedicated to nonholonomic UAVs. This field generates forces that repulse the UAV not from the obstacle’s geometrical center, but from areas immediately behind and in front of it located along a line defined by the obstacle’s velocity vector. The strength of the repulsive force depends on the UAV’s distance to the line representing the obstacle’s movement direction, distance to the obstacle along that line, and the relative speed between the UAV and the obstacle projected to the line, making the proposed repulsive potential field multidimensional. Numerical simulations presented within the paper prove the effectiveness of the proposed novel repulsive potential field in controlling the flight of nonholonomic UAVs.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7362
Author(s):  
Xinglei Zhang ◽  
Binghui Fan ◽  
Chuanjiang Wang ◽  
Xiaolin Cheng

Different from traditional redundant manipulators, the redundant manipulators used in the surgical environment require the end effector (EE) to have high pose (position and orientation) accuracy to ensure the smooth progress of the operation. When analyzing the inverse kinematics (IK) of traditional redundant manipulators, gradient-projection method (GPM) and weighted least-norm (WLN) method are commonly used methods to avoid joint position limits. However, for the traditional GPM and WLN method, when joints are close to their limits, they stop moving, which greatly reduces the accuracy of the IK solution. When robotic manipulators enter a singular region, although traditional damped least-squares (DLS) algorithms are used to handle singularities effectively, motion errors of the EE will be introduced. Furthermore, selecting singular region through trial and error may cause some joint velocities exceed their corresponding limits. More importantly, traditional DLS algorithms cannot guide robotic manipulators away from singular regions. Inspired by the merits of GPM, WLN, and DLS methods, an improved weighted gradient projection method (IWGPM) is proposed to solve the IK problem of redundant manipulators used in the surgical environment with avoiding joint position limits and singularities. The weighted matrix of the WLN method and the damping factor of the DLS algorithm have been improved, and a joint limit repulsive potential field function and singular repulsive potential field function belong to the null space are introduced to completely keep joints away from the damping interval and redundant manipulators away from the unsafe region. To verify the validity of the proposed IWGPM, simulations on a 7 degree of freedom (DOF) redundant manipulator used in laparoscopic surgery indicate that the proposed method can not only achieve higher accuracy IK solution but also avoid joint position limits and singularities effectively by comparing them with the results of the traditional GPM and WLN method, respectively. Furthermore, based on the proposed IWGPM, simulation tests in two cases show that joint position limits have a great impact on the orientation accuracy, and singular potential energy function has a great impact on the position accuracy.


Author(s):  
A. Ibrahim ◽  
F. Marsiglio

The notion of a double well potential typically involves two regions of space separated by a repulsive potential barrier. The ground state is a wave function that is suppressed in the barrier region and localized in the two surrounding regions. We illustrate that an attractive potential well (a quantum moat) with a finite non-zero width also acts as a barrier, using a simple square well model. We also show how the pseudopotential method both explains the role of the well as a barrier, and greatly improves the efficiency of constructing wave functions for this system using matrix diagonalization. With this simplified model we provide an introduction to the ideas typically used to simplify calculations in solids, where in place of the double well potential, multiple potentials occur in a periodic array.


2021 ◽  
Author(s):  
Thales Carl Lavoratti ◽  
Sascha Heitkam ◽  
Uwe Hampel ◽  
Gregory Lecrivain

AbstractA modified phase-field model is presented to numerically study the dynamics of flowing foam in an obstructed channel. The bubbles are described as smooth deformable fields interacting with one another through a repulsive potential. A strength of the model lies in its ability to simulate foams with wide range of gas fraction. The foam motion, composed of about hundred two-dimensional gas elements, was analyzed for gas fractions ranging from 0.4 to 0.99, that is below and beyond the jamming transition. Simulations are preformed near the quasi-static limit, indicating that the bubble rearrangement in the obstructed channel is primarily driven by the soft collisions and not by the hydrodynamics. Foam compression and relaxation upstream and downstream of the obstacle are reproduced and qualitatively match previous experimental and numerical observations. Striking dynamics, such as bubbles being squeezed by their neighbors in negative flow direction, are also revealed at intermediate gas fractions.


2021 ◽  
Vol 13 (6) ◽  
pp. 3194
Author(s):  
Fang Zong ◽  
Meng Zeng ◽  
Yang Cao ◽  
Yixuan Liu

Path planning is one of the most important aspects for ambulance driving. A local dynamic path planning method based on the potential field theory is presented in this paper. The potential field model includes two components—repulsive potential and attractive potential. Repulsive potential includes road potential, lane potential and obstacle potential. Considering the driving distinction between an ambulance and a regular vehicle, especially in congested traffic, an adaptive potential function for a lane line is constructed in association with traffic conditions. The attractive potential is constructed with target potential, lane-velocity potential and tailgating potential. The design of lane-velocity potential is to characterize the influence of velocity on other lanes so as to prevent unnecessary lane-changing behavior for the sake of time-efficiency. The results obtained from simulation demonstrate that the proposed method yields a good performance for ambulance driving in an urban area, which can provide support for designing an ambulance support system for the ambulance personnel and dispatcher.


2021 ◽  
Vol 17 (3) ◽  
pp. 1771-1781
Author(s):  
Akshay Krishna Ammothum Kandy ◽  
Eddie Wadbro ◽  
Bálint Aradi ◽  
Peter Broqvist ◽  
Jolla Kullgren
Keyword(s):  

2021 ◽  
Vol 125 (2) ◽  
pp. 691-699
Author(s):  
Chiara Panosetti ◽  
Simon B. Anniés ◽  
Cristina Grosu ◽  
Stefan Seidlmayer ◽  
Christoph Scheurer

2020 ◽  
Vol MA2020-02 (2) ◽  
pp. 198-198
Author(s):  
Chiara Panosetti ◽  
Simon Anniés ◽  
Cristina Grosu ◽  
Christoph Scheurer

Sign in / Sign up

Export Citation Format

Share Document