scholarly journals Local Dynamic Path Planning for an Ambulance Based on Driving Risk and Attraction Field

2021 ◽  
Vol 13 (6) ◽  
pp. 3194
Author(s):  
Fang Zong ◽  
Meng Zeng ◽  
Yang Cao ◽  
Yixuan Liu

Path planning is one of the most important aspects for ambulance driving. A local dynamic path planning method based on the potential field theory is presented in this paper. The potential field model includes two components—repulsive potential and attractive potential. Repulsive potential includes road potential, lane potential and obstacle potential. Considering the driving distinction between an ambulance and a regular vehicle, especially in congested traffic, an adaptive potential function for a lane line is constructed in association with traffic conditions. The attractive potential is constructed with target potential, lane-velocity potential and tailgating potential. The design of lane-velocity potential is to characterize the influence of velocity on other lanes so as to prevent unnecessary lane-changing behavior for the sake of time-efficiency. The results obtained from simulation demonstrate that the proposed method yields a good performance for ambulance driving in an urban area, which can provide support for designing an ambulance support system for the ambulance personnel and dispatcher.

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Zhi-qiang Liu ◽  
Teng Zhang ◽  
Yi-fan Wang

A local dynamic path planning method is proposed to compensate for the lack of consideration of the movement state of surrounding vehicles, the poor comfort, and the low traffic efficiency when the existing vehicle changes lanes automatically. Firstly, the cubic polynomial is predefined, and the optimal track path is solved. According to the real-time information of environment perception, the model is continuously modified by acquiring real-time information in the course of path planning, and the regional safety of the vehicle is realized. The Carsim and simulink simulation results and actual vehicle verification show that, compared with the traditional nondynamic research method, this method can effectively solve the problem that the vehicle speed variation and the sudden intrusions of the vehicle leading to the compulsory operation of the vehicle during the course of lane-changing. The safety is also improved. In order to ensure the vehicle comfort and stability, the lane-changing time is shortened by 20%, and the efficiency of lane-changing is improved obviously.


Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 188 ◽  
Author(s):  
Qing Wu ◽  
Zeyu Chen ◽  
Lei Wang ◽  
Hao Lin ◽  
Zijing Jiang ◽  
...  

Mobile robots are becoming more and more widely used in industry and life, so the navigation of robots in dynamic environments has become an urgent problem to be solved. Dynamic path planning has, therefore, received more attention. This paper proposes a real-time dynamic path planning method for mobile robots that can avoid both static and dynamic obstacles. The proposed intelligent optimization method can not only get a better path but also has outstanding advantages in planning time. The algorithm used in the proposed method is a hybrid algorithm based on the beetle antennae search (BAS) algorithm and the artificial potential field (APF) algorithm, termed the BAS-APF method. By establishing a potential field, the convergence speed is accelerated, and the defect that the APF is easily trapped in the local minimum value is also avoided. At the same time, by setting a security scope to make the path closer to the available path in the real environment, the effectiveness and superiority of the proposed method are verified through simulative results.


2012 ◽  
Vol 490-495 ◽  
pp. 994-998 ◽  
Author(s):  
Pu Shi ◽  
Jian Ning Hua

Artificial potential field based mobile robot path planning approaches have been widely used. However, most methods are applied in the static environment where the target and the obstacles are stationary. In this paper, a potential field approach used in dynamic situation is proposed. Its major characteristics include a new attractive potential function as well as a repulsive potential function. The former takes the relative position and velocity between the robot and the target into consideration; the latter takes into account the relative position and velocity between the robot and the obstacles. The proposed approach guarantees the robot can track the moving target while escape from moving obstacles. Simulation experiments are carried out and the results demonstrate the effectiveness of the new potential field method.


Sign in / Sign up

Export Citation Format

Share Document