Stability Analysis, Control of Simple Chaotic System and its Hybrid Projective Synchronization with Fractional Lu System

2020 ◽  
Vol 9 (1) ◽  
pp. 93-107 ◽  
Author(s):  
Vijay K. Yadav ◽  
Vijay K. Shukla ◽  
Mayank Srivastava ◽  
Subir Das
Complexity ◽  
2014 ◽  
Vol 21 (5) ◽  
pp. 125-130 ◽  
Author(s):  
Yan Zhou ◽  
Xuerong Shi ◽  
Zuolei Wang ◽  
Juanjuan Huang ◽  
Keming Tang ◽  
...  

2014 ◽  
Vol 721 ◽  
pp. 269-272
Author(s):  
Fan Di Zhang

This paper propose fractional-order Lu complex system. Moreover, projective synchronization control of the fractional-order hyper-chaotic complex Lu system is studied based on feedback technique and the stability theorem of fractional-order systems, the scheme of anti-synchronization for the fractional-order hyper-chaotic complex Lu system is presented. Numerical simulations on examples are presented to show the effectiveness of the proposed control strategy.


2012 ◽  
Vol 22 (01) ◽  
pp. 1250015 ◽  
Author(s):  
FUCHEN ZHANG ◽  
CHUNLAI MU ◽  
XIAOWU LI

By constructing a suitable Lyapunov function, we show that for the Lü chaotic system parameters in some specified regions, the solutions of the system are globally bounded.


2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Tao Wang ◽  
Kejun Wang ◽  
Nuo Jia

Adaptive feedback controllers based on Lyapunov's direct method for chaos control and hybrid projective synchronization (HPS) of a novel 3D chaotic system are proposed. Especially, the controller can be simplified ulteriorly into a single scalar one to achieve complete synchronization. The HPS between two nearly identical chaotic systems with unknown parameters is also studied, and adaptive parameter update laws are developed. Numerical simulations are demonstrated to verify the effectiveness of the control strategies.


2012 ◽  
Vol 542-543 ◽  
pp. 1042-1046 ◽  
Author(s):  
Xin Deng

In this paper, the first new chaotic system is gained by anti-controlling Chen system,which belongs to the general Lorenz system; also, the second new chaotic system is gained by anti-controlling the first new chaotic system, which belongs to the general Lü system. Moreover,some basic dynamical properties of two new chaotic systems are studied, either numerically or analytically. The obtained results show clearly that Chen chaotic system and two new chaotic systems also can form another Lorenz system family and deserve further detailed investigation.


Author(s):  
Babatunde Idowu ◽  
Kehinde Oyeleke ◽  
Cornelius Ogabi ◽  
Olasunkanmi Olusola

Introduction: In this work, the projective synchronization of two identical three dimensional chaotic system with quadratic and quartic non linearities was considered as well as the equilibrium and stability analysis of the system. The projective synchronization with same and different scaling factor was carried out for this category of system to show its feasibility in order to establish that no matter the type and number of nonlinearities, projective synchronization can be achieved. Numerical simulations was done to verify the above. In all kinds of chaos synchronization, projective synchronization (PS), characterized by a scaling factor that two systems synchronize proportionally, is one of the most interesting problems. It was first reported by Mainieri et al [1] , where it was stated that the two identical systems (master and slave) could be synchronized up to a scaling factor, . They further stated that the scaling factor was dependent on the chaotic evolution and initial conditions so that the ultimate state of projective synchronization was unpredictable. Aims: Is to achieve projective synchronization of two identical three Dimensional chaotic system with quadratic and quartic nonlinearities synchronizing to a scaling factor and also present the equilibrium and stability analysis of the system. This is to establish that projective synchronization can be achieved for varied systems with varied nonlinearities. Materials and Methods: We employed the adaptive synchronization technique to achieve projective synchronization of the system (master and slave) with different scaling factors, and the fourth order RungeKutta algorithm is used for numerical solutions. Results: In this work, the projective synchronization of two identical three dimensional systems with quadratic and quartic nonlinearities was achieved with the same and different scaling factor, . The equilibrium and stability analysis of the system was also presented. Numerical simulations was done to verify the above. Conclusion: The investigated projective synchronization behaviour of two identical three-dimensional system with two nonlinearities (quadratic and quartic) was achieved for cases where the scaling factor is the same and when different. This shows that projective synchronization can be achieved for systems with varying nonlinearities even when the scaling factor is different and this suggests its use in communication using chaotic wave forms as carriers, perhaps with a view to securing communication.


2009 ◽  
Vol 23 (15) ◽  
pp. 1913-1921 ◽  
Author(s):  
XINGYUAN WANG ◽  
JUNMEI SONG

This paper studies the adaptive full state hybrid projective synchronization method. Based on the Lyapunov stability theory, an adaptive controller is designed. It is proved theoretically that the controller can make the states of the dynamical system and the response system with known or unknown parameters asymptotically full state hybrid projective synchronized. A unified chaotic system is used as an example and numerical simulations show the effectiveness of the scheme.


Sign in / Sign up

Export Citation Format

Share Document