Implementation of Steering Process For Labriform Swimming Robot Based on Differential Drive Principle

2021 ◽  
Vol 10 (4) ◽  
pp. 721-737
Author(s):  
Farah Abbas Naser ◽  
Mofeed Turky Rashid
Keyword(s):  
2017 ◽  
Vol 10 (4) ◽  
pp. 325
Author(s):  
Angie Julieth Valencia Castañeda ◽  
Mauricio Felipe Mauledoux Monroy ◽  
Oscar Fernando Avilés Sánchez ◽  
Paola Andrea Niño Suarez ◽  
Edgar Alfredo Portilla Flores

Author(s):  
S. I. A. P. Diddeniya ◽  
J. Liyanage ◽  
W. K. I. L. Wanniarachchi ◽  
C. Premachandra ◽  
H. N. Gunasinghe

2021 ◽  
Vol 54 ◽  
pp. 699-711
Author(s):  
Andrey Efimov ◽  
Oleg Polushkin ◽  
Sergey Kireev ◽  
Marina Korchagina

2014 ◽  
Vol 668-669 ◽  
pp. 352-356 ◽  
Author(s):  
Zhi Hu Ruan ◽  
Niu Wang ◽  
Bing Xin Ran

Based on kinematics characteristic of two-wheeled differential drive mobile robot (WMR) and response characteristic of fact motor drive system, this paper presents the analysis method of the equivalent rotation inertia, and the entire vehicle load is assigned to each wheel, and then the wheel load is converted into the corresponding equivalent rotation inertia of the motor shaft of each wheel, and motion model of WMR are obtained for combining with quasi-equivalent (QE) state space model of double-loop direct current motor systems under variable load and kinematics model of WMR under the load changes. By using speed response data of the actual system and combining with genetic algorithm to accurately identify the model parameters. Finally, through experiments results of the WMR motion model and the second order model respectively comparing with the actual system which demonstrates the effectiveness of the proposing method and model.


2021 ◽  
Author(s):  
Luigi Tagliavini ◽  
Andrea Botta ◽  
Luca Carbonari ◽  
Giuseppe Quaglia ◽  
Dario Gandini ◽  
...  

Abstract In this paper, a novel mobile platform for assistive robotics tasks is presented. The machine is designed for working in a home environment, un-structured and possibly occupied by people. To work in this space, the platform must be able to get rid of all the consequent difficulties: to overpass small objects as steps and carpets, to operate with an as-high-as-possible dynamics, to avoid moving obstacles, and to navigate autonomously to track persons for person monitoring purposes. The proposed platform is designed to have an omni-directional mobility that improves the manoeuvrability with respect to state-of-the-art differential drive robots. It also will have a non-axisymmetric shape to easily navigate narrow spaces, and real-time edge computing algorithms for navigation. This work shows the design paradigm adopted for the realization of a novel mobile robot, named Paquitop. For a robust output, the design process used a modular approach which disjointed the several sub-systems which compose the machine. After a brief analysis of the expected features, a set of basic requirements are drawn to guide the functional and executive design. The overall architecture of the platform is presented, together with some details on the mechanical and electrical systems.


Author(s):  
Youngjin Kim ◽  
Tarunraj Singh

Abstract Point-to-point path planning for a kinematic model of a differential-drive wheeled mobile robot (WMR) with the goal of minimizing input energy is the focus of this work. An optimal control problem is formulated to determine the necessary conditions for optimality and the resulting two point boundary value problem is solved in closed form using Jacobi elliptic functions. The resulting nonlinear programming problem is solved for two variables and the results are compared to the traditional shooting method to illustrate that the Jacobi elliptic functions parameterize the exact profile of the optimal trajectory. A set of terminal constraints which lie on a circle in the first quadrant are used to generate a set of optimal solutions. It is noted that for maneuvers where the angle of the vector connecting the initial and terminal point is greater than a threshold, which is a function of the radius of the terminal constraint circle, the robot initially moves into the third quadrant before terminating in the first quadrant. The minimum energy solution is compared to two other optimal control formulations: (1) an extension of the Dubins vehicle model where the constant linear velocity of the robot is optimized for and (2) a simple turn and move solution, both of whose optimal paths lie entirely in the first quadrant. Experimental results are used to validate the optimal trajectories of the differential-drive robot.


2007 ◽  
Vol 46 (5) ◽  
pp. 836-841 ◽  
Author(s):  
V. V. Evgrafov ◽  
V. V. Pavlovsky ◽  
V. E. Pavlovsky
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document