scholarly journals Dynamics of insecticide resistance and exploring biochemical mechanisms involved in pyrethroids and dichlorodiphenyltrichloroethane (DDT) cross-resistance in Anopheles gambiae s.l populations from Benin, West Africa

2014 ◽  
Vol 8 (3) ◽  
pp. 41-50
Author(s):  
Azoun Nazaire ◽  
Azondekon Roseric ◽  
Akpon Rock ◽  
Anagonou Rodrigue ◽  
Gnanguenon Virgile ◽  
...  
PLoS ONE ◽  
2012 ◽  
Vol 7 (11) ◽  
pp. e48412 ◽  
Author(s):  
Moussa Namountougou ◽  
Frédéric Simard ◽  
Thierry Baldet ◽  
Abdoulaye Diabaté ◽  
Jean Bosco Ouédraogo ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
pp. 023-029
Author(s):  
Nazaire Aïzoun

The current study was aimed to investigate on dynamics of propoxur resistance in Anopheles gambiae s.l. populations from N’ dali district in northern Benin (West Africa) and also to investigate on dynamics of malathion resistance in Anopheles gambiae s. l. populations from Toffo district in southern Benin. Larvae and pupae of Anopheles gambiae s. l . mosquitoes were collected from the breeding sites in Borgou and Atlantic departments in 2015 and 2019. WHO susceptibility tests were conducted on unfed female mosquitoes aged 2-5 days old. WHO bioassays were performed with impregnated papers with propoxur 0.1% and with malathion 5%. PCR techniques were used to detect species and Ace-1 mutations in 2015. Anopheles gambiae s. l. populations from N’dali were resistant to propoxur in 2015 and were still remained resistant to this product in 2019. Regarding Anopheles gambiae s. l. populations from Toffo, they were susceptible to malathion in 2015 whereas the malathion resistance status of these mosquitoes requires further investigation in 2019. PCR revealed that all specimens tested were Anopheles gambiae s. s. The presence of Ace-1R at very low frequency (0.01) was observed in Anopheles gambiae s. l. populations from both districts. This study shows that propoxur resistance detected in An. gambiae s. l. populations from N’ dali needs to be monitored for insecticide resistance in this area.


2021 ◽  
Vol 6 (3) ◽  
pp. 020-026
Author(s):  
Nazaire Aïzoun

The current study was aimed to investigate on dynamics of propoxur resistance in Anopheles gambiae s.l. populations from N’ dali district in northern Benin (West Africa) and also to investigate on dynamics of malathion resistance in Anopheles gambiae s. l. populations from Toffo district in southern Benin. Larvae and pupae of Anopheles gambiae s. l . mosquitoes were collected from the breeding sites in Borgou and Atlantic departments in 2015 and 2019. WHO susceptibility tests were conducted on unfed female mosquitoes aged 2-5 days old. WHO bioassays were performed with impregnated papers with propoxur 0.1% and with malathion 5%. PCR techniques were used to detect species and Ace-1 mutations in 2015. Anopheles gambiae s. l. populations from N’dali were resistant to propoxur in 2015 and were still remained resistant to this product in 2019. Regarding Anopheles gambiae s. l. populations from Toffo, they were susceptible to malathion in 2015 whereas the malathion resistance status of these mosquitoes requires further investigation in 2019. PCR revealed that all specimens tested were Anopheles gambiae s. s. The presence of Ace-1R at very low frequency (0.01) was observed in Anopheles gambiae s. l. populations from both districts. This study shows that propoxur resistance detected in An. gambiae s. l. populations from N’ dali needs to be monitored for insecticide resistance in this area.


2013 ◽  
Vol 6 (1) ◽  
Author(s):  
Philippe Nwane ◽  
Josiane Etang ◽  
Mouhamadou Chouaїbou ◽  
Jean Claude Toto ◽  
Alphonsine Koffi ◽  
...  

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Rebecca Pwalia ◽  
Joannitta Joannides ◽  
Alidu Iddrisu ◽  
Charlotte Addae ◽  
Dominic Acquah-Baidoo ◽  
...  

1995 ◽  
Vol 85 (2) ◽  
pp. 229-234 ◽  
Author(s):  
J. Hemingway ◽  
S.W. Lindsay ◽  
G.J. Small ◽  
M. Jawara ◽  
F.H. Collins

AbstractPyrethroid-impregnated bednets are being used nationwide in The Gambia. The future success of this malaria control programme depends partly on the vectors remaining susceptible to those insecticides used for treating the nets. The present study was carried out on the south bank of the river Gambia, during the first large scale trial of nets in this country. Thus this area represents a sentinel site for detecting insecticide resistance in local vectors. This study gives an example of how a system of early detection for resistance problems can be set up in a relatively complex situation where multiple vectors and non-vectors are present. Samples of the Anopheles gambiae complex were caught indoors using light traps in twelve villages used in the bednet study. In all villages A. gambiae sensu stricto Giles was the predominant member of the complex as determined using the rDNA-PCR diagnostic assay. Limited bioassays with DDT and permethrin, and biochemical assays for a range of insecticide resistance mechanisms suggest that the A. gambiae complex remains completely susceptible to all major classes of commonly used insecticides including pyrethroids. Biochemical assays suggest that a low frequency of DDT resistance may occur in A. melas Theobald. This is based on elevated glutathione S-transferase levels coupled with increased levels of DDT metabolism and does not involve cross-resistance to pyrethroids. Therefore we do not envisage a decline in the efficacy of treated nets against malaria vectors in the study area in the immediate future, although monitoring should be continued whilst wide-scale use of impregnated bednets is operational.


Sign in / Sign up

Export Citation Format

Share Document