malaria control programme
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 58)

H-INDEX

14
(FIVE YEARS 1)

2022 ◽  
Vol 21 (1) ◽  
Author(s):  
John B. Keven ◽  
Michelle Katusele ◽  
Rebecca Vinit ◽  
Daniela Rodríguez-Rodríguez ◽  
Manuel W. Hetzel ◽  
...  

Abstract Background A malaria control programme based on distribution of long-lasting insecticidal bed nets (LLINs) and artemisinin combination therapy began in Papua New Guinea in 2009. After implementation of the programme, substantial reductions in vector abundance and malaria transmission intensity occurred. The research reported here investigated whether these reductions remained after seven years of sustained effort. Methods All-night (18:00 to 06:00) mosquito collections were conducted using human landing catches and barrier screen methods in four villages of Madang Province between September 2016 and March 2017. Anopheles species identification and sporozoite infection with Plasmodium vivax and Plasmodium falciparum were determined with molecular methods. Vector composition was expressed as the relative proportion of different species in villages, and vector abundance was quantified as the number of mosquitoes per barrier screen-night and per person-night. Transmission intensity was quantified as the number of sporozoite-infective vector bites per person-night. Results Five Anopheles species were present, but vector composition varied greatly among villages. Anopheles koliensis, a strongly anthropophilic species was the most prevalent in Bulal, Matukar and Wasab villages, constituting 63.7–73.8% of all Anopheles, but in Megiar Anopheles farauti was the most prevalent species (97.6%). Vector abundance varied among villages (ranging from 2.8 to 72.3 Anopheles per screen-night and 2.2–31.1 Anopheles per person-night), and spatially within villages. Malaria transmission intensity varied among the villages, with values ranging from 0.03 to 0.5 infective Anopheles bites per person-night. Most (54.1–75.1%) of the Anopheles bites occurred outdoors, with a substantial proportion (25.5–50.8%) occurring before 22:00. Conclusion The estimates of vector abundance and transmission intensity in the current study were comparable to or higher than estimates in the same villages in 2010–2012, indicating impeded programme effectiveness. Outdoor and early biting behaviours of vectors are some of the likely explanatory factors. Heterogeneity in vector composition, abundance and distribution among and within villages challenge malaria control programmes and must be considered when planning them.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1948
Author(s):  
Moussa Diallo ◽  
Majidah Hamid-Adiamoh ◽  
Ousmane Sy ◽  
Pape Cheikh Sarr ◽  
Jarra Manneh ◽  
...  

The evolution and spread of insecticide resistance mechanisms amongst malaria vectors across the sub-Saharan Africa threaten the effectiveness and sustainability of current insecticide-based vector control interventions. However, a successful insecticide resistance management plan relies strongly on evidence of historical and contemporary mechanisms circulating. This study aims to retrospectively determine the evolution and spread of pyrethroid resistance mechanisms among natural Anopheles gambiae s.l. populations in Senegal. Samples were randomly drawn from an existing mosquito sample, collected in 2013, 2017, and 2018 from 10 sentinel sites monitored by the Senegalese National Malaria Control Programme (NMCP). Molecular species of An. gambiae s.l. and the resistance mutations at the Voltage-gated Sodium Channel 1014 (Vgsc-1014) locus were characterised using PCR-based assays. The genetic diversity of the Vgsc gene was further analyzed by sequencing. The overall species composition revealed the predominance of Anopheles arabiensis (73.08%) followed by An. gambiae s.s. (14.48%), Anopheles coluzzii (10.94%) and Anopheles gambiae–coluzii hybrids (1.48%). Both Vgsc-1014F and Vgsc-1014S mutations were found in all studied populations with a spatial variation of allele frequencies from 3% to 90%; and 7% to 41%, respectively. The two mutations have been detected since 2013 across all the selected health districts, with Vgsc-L1014S frequency increasing over the years while Vgsc-1014F decreasing. At species level, the Vgsc-1014F and Vgsc-1014S alleles were more frequent amongst An. gambiae s.s. (70%) and An. arabiensis (20%). The Vgsc gene was found to be highly diversified with eight different haplotypes shared between Vgsc-1014F and Vgsc-1014S. The observed co-occurrence of Vgsc-1014F and Vgsc-1014S mutations suggest that pyrethroid resistance is becoming a widespread phenomenon amongst malaria vector populations, and the NMCP needs to address this issue to sustain the gain made in controlling malaria.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Janvier Bandibabone ◽  
Charles McLoughlin ◽  
Sévérin N’Do ◽  
Chimanuka Bantuzeko ◽  
Vital Byabushi ◽  
...  

Abstract Background Malaria vector control in the Democratic Republic of the Congo is plagued by several major challenges, including inadequate infrastructure, lack of access to health care systems and preventative measures, and more recently the widespread emergence of insecticide resistance among Anopheles mosquitoes. Across 26 provinces, insecticide resistance has been reported from multiple sentinel sites. However, to date, investigation of molecular resistance mechanisms among Anopheles vector populations in DRC has been more limited. Methods Adult Anopheles gambiae sensu lato (s.l.) and Anopheles funestus s.l. were collected from two sites in Sud-Kivu province and one site in Haut-Uélé province and PCR-screened for the presence of 11 resistance mutations, to provide additional information on frequency of resistance mechanisms in the eastern DRC, and to critically evaluate the utility of these markers for prospective country-wide resistance monitoring. Results L1014F-kdr and L1014S-kdr were present in 75.9% and 56.7% of An. gambiae s.l. screened, respectively, with some individuals harbouring both resistant alleles. Across the three study sites, L43F-CYP4J5 allele frequency ranged from 0.42 to 0.52, with evidence for ongoing selection. G119S-ace1 was also identified in all sites but at lower levels. A triple mutant haplotype (comprising the point mutation CYP6P4-I236M, the insertion of a partial Zanzibar-like transposable element and duplication of CYP6AA1) was present at high frequencies. In An. funestus s.l. cis-regulatory polymorphisms in CYP6P9a and CYP6P9b were detected, with allele frequencies ranging from 0.82 to 0.98 and 0.65 to 0.83, respectively. Conclusions This study screened the most up-to-date panel of DNA-based resistance markers in An. gambiae s.l. and An. funestus s.l. from the eastern DRC, where resistance data is lacking. Several new candidate markers (CYP4J5, G119S-ace1, the triple mutant, CYP6P9a and CYP6P9b) were identified, which are diagnostic of resistance to major insecticide classes, and warrant future, larger-scale monitoring in the DRC to inform vector control decisions by the National Malaria Control Programme.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Benjamin Abuaku ◽  
Nancy Odurowah Duah-Quashie ◽  
Neils Quashie ◽  
Akosua Gyasi ◽  
Patricia Opoku Afriyie ◽  
...  

Abstract Background Since the introduction of artemisinin-based combination therapy (ACT) in Ghana in 2005 there has been a surveillance system by the National Malaria Control Programme (NMCP) and the University of Ghana Noguchi Memorial Institute for Medical Research (UG-NMIMR) to monitor the therapeutic efficacy of ACTs for the treatment of uncomplicated malaria in the country. We report trends and determinants of failure following treatment of Ghanaian children with artesunate-amodiaquine (ASAQ) and artemether-lumefantrine (AL) combinations. Methods Per protocol analyses as well as cumulative incidence of day 28 treatment failure from Kaplan Meier survival analyses were used to describe trends of failure over the surveillance period of 2005–2018. Univariable and multivariable cox regression analyses were used to assess the determinants of treatment failure over the period. Results Day 28 PCR-corrected failure, following treatment with ASAQ, significantly increased from 0.0% in 2005 to 2.0% (95% CI: 1.1–3.6) in 2015 (p = 0.013) but significantly decreased to 0.4% (95% CI: 0.1–1.6) in 2018 (p = 0.039). Failure, following treatment with AL, decreased from 4.5% (95% CI: 2.0–9.4) in 2010 to 2.7% (95% CI: 1.4–5.1) in 2018, though not statistically significant (p = 0.426). Risk of treatment failure, from multivariable cox regression analyses, was significantly lower among children receiving ASAQ compared with those receiving AL (HR = 0.24; 95% CI: 0.11–0.53; p < 0.001); lower among children with no parasitaemia on day 3 compared with those with parasitaemia on day 3 (HR = 0.02; 95% CI: 0.01–0.13; p < 0.001); and higher among children who received ASAQ and had axillary temperature ≥ 37.5 °C on day 1 compared with those with axillary temperature < 37.5 °C (HR = 3.96; 95% CI: 1.61–9.75; p = 0.003). Conclusions Treatment failures for both ASAQ and AL have remained less than 5% (below WHO’s threshold of 10%) in Ghana since 2005. Predictors of treatment failure that need to be considered in the management of uncomplicated malaria in the country should include type of ACT, day 3 parasitaemia, and day 1 axillary temperature of patients being treated.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Verner N. Orish ◽  
Raymond Saa-Eru Maalman ◽  
Otchere Y. Donkor ◽  
Barbara Yordanis Henandez Ceruantes ◽  
Eric Osei ◽  
...  

Abstract Background Malaria is a preventable disease that causes huge morbidity and mortality in malaria-endemic areas, especially among children and pregnant women. The malaria control programme focuses on the prevention of mosquito bites using insecticide-treated nets (ITNs) and mosquito aerosol sprays and coils, as well as prevention of severe disease among those infected through prompt and adequate treatment. The success of the malaria control programme in Ghana is dependent on the malaria prevention practices of people in the community. Therefore, this study evaluated the malaria prevention practices of participants in four districts of the Volta Region of Ghana. Methods This was a cross-sectional study conducted in Ketu South, Nkwanta South, Hohoe Municipality and Ho West districts of the Volta Region of Ghana. Questionnaire were administered to adults who consented to each household visited. Questions were asked on the socio-demographics and malaria prevention practices of the households. Data analysis was done using SPSS version 23 with frequency distribution done for all the variables. Pearson chi-square was used to determine the significant association between socio-demographics and malaria prevention practices, and Multivariate nominal logistic regression analysis was used to model the relationship between dichotomous dependent variables (ITN ownership and usage) and independent variables. Results Out of the 2493 participants; 2234 (89.6%) owned ITN and 1528 (68.4%) used ITN a night before this study, 768 (30.8%) used mosquito aerosol spray and 368 (15%) used mosquito coil. More females significantly owned ITN than males (1293, 92.4%, p ≤ 0.001). Participants from Ketu South had 1.5 times higher odds of owning an ITN compared to Ho West whose odds are not different from Nkwanta South or Hohoe (AOR, 1.56 [95% 1.09–2.22]; p = 0.01). In terms of ITN usage, participants in Nkwanta South were less likely to use ITN compared to the other districts; AOR, 0.434 [95% CI 0.31–0.62, p < 0.001]. Also, of the 668 participants that had a fever within the past 3 days, 268 (40.1%) visited a patent medicine store and 156 (23.4%) visited health facilities. Conclusion There is high ownership of ITNs, but relatively low utilization among the community members. Education on malaria prevention practices should be intensified and continuous among the population of the Volta Region to ensure the success of malaria control in the region.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Anne Thomas ◽  
Tchaa A. Bakai ◽  
Tinah Atcha-Oubou ◽  
Tchassama Tchadjobo ◽  
Nadine Bossard ◽  
...  

Abstract Background This study aimed to assess the seasonality of confirmed malaria cases in Togo and to provide new indicators of malaria seasonality to the National Malaria Control Programme (NMCP). Methods Aggregated data of confirmed malaria cases were collected monthly from 2008 to 2017 by the Togo’s NMCP and stratified by health district and according to three target groups: children < 5 years old, children ≥ 5 years old and adults, and pregnant women. Time series analysis was carried out for each target group and health district. Seasonal decomposition was used to assess the seasonality of confirmed malaria cases. Maximum and minimum seasonal indices, their corresponding months, and the ratio of maximum/minimum seasonal indices reflecting the importance of malaria transmission, were provided by health district and target group. Results From 2008 to 2017, 7,951,757 malaria cases were reported in Togo. Children < 5 years old, children ≥ 5 years old and adults, and pregnant women represented 37.1%, 57.7% and 5.2% of the confirmed malaria cases, respectively. The maximum seasonal indices were observed during or shortly after a rainy season and the minimum seasonal indices during the dry season between January and April in particular. In children < 5 years old, the ratio of maximum/minimum seasonal indices was higher in the north, suggesting a higher seasonal malaria transmission, than in the south of Togo. This is also observed in the other two groups but to a lesser extent. Conclusions This study contributes to a better understanding of malaria seasonality in Togo. The indicators of malaria seasonality could allow for more accurate forecasting in malaria interventions and supply planning throughout the year.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Patrick O. Ansah ◽  
Nana A. Ansah ◽  
Keziah Malm ◽  
Dennis Awuni ◽  
Nana Peprah ◽  
...  

Abstract Background In Sahelian Africa, the risk of malaria increases with the arrival of the rains, particularly in young children. Following successful trials, the World Health Organization (WHO) recommended the use of seasonal malaria chemoprevention (SMC) in areas with seasonal peak in malaria cases. This study evaluated the pilot implementation of SMC in Northern Ghana. Methods Fourteen communities each serving as clusters were selected randomly from Lawra District of Upper West Region as intervention area and West Mamprusi District in the Northern Region as the non-intervention area. The intervention was undertaken by the National Malaria Control Programme in collaboration with regional health directorates using sulfadoxine-pyrimethamine plus amodiaquine and standard WHO protocols. Before and after surveys for malaria parasitaemia and haemoglobin levels as well as monitoring for malaria morbidity and mortality were undertaken. Results At the end of the intervention, participant retention was 92.9% (697/731) and 89.5% (634/708) in the intervention and the non-intervention areas, respectively. The proportion of children with asexual parasites reduced by 19% (p = 0.000) in the intervention and increased by 12% (p = 0.000) in the non-intervention area. Incidence rates of severe malaria were 10 and 20 per 1000 person-years follow up in the intervention and comparison areas, respectively with P.E of 45% (p = 0.62). For mild malaria, it was 220 and 170 per 1000 person-years in intervention and comparison area, respectively with PE of - 25% (p = 0.31). The proportion of children with anaemia defined as Hb< 11.0 g/dl reduced from 14.2% (52.8–38.6%) in the intervention area as compared to an increase of 8.1% (54.5% to 62.6) the non-intervention arm, Mean Hb reduced by 0. 24 g/dl (p = 0.000) in the non-intervention area and increased of 0.39 g/dl (p = 000) in the intervention area. Conclusions The feasibility and effectiveness of SMC introduction in Northern Ghana was demonstrated as evidenced by high study retention, reduction in malaria parasitaemia and anaemia during the wet season.


Author(s):  
Arthur Sovi ◽  
Virgile Gnanguenon ◽  
Roseric Azondekon ◽  
Frédéric Oké-Agbo ◽  
Speraud Houevoessa ◽  
...  

Abstract The present study investigated in 8 villages of the Plateau region the coverage, usage, physical integrity, and bio-efficacy of the Olyset nets distributed nationwide by the Benin's National Malaria Control Programme in July 2011. The questionnaire administered as well as the observations made in the households allowed estimating the coverage and usage rates of the 2011 Olyset nets. While their physical integrity was assessed through standard WHO methodology, their bio-efficacy was evaluated through gas chromatography, and WHO cone testing performed with the Kisumu susceptible strain. Mosquito collections through human landing catches (HLCs) were also performed in torn nets to assess if a loss of protection of sleepers occurred as the nets fabric integrity got more damaged. Nine months postdistribution, the coverage and usage rates of the 2011 Olyset nets were 67.4% (95% CI: 65.8–68.9) and 73.3% (95% CI: 70.7–75.8) respectively. About 28% of the 2011 Olyset nets were torn. A drastic drop of the insecticide quantity on the fibers of the nets [from 7.08 µg (95% CI: 5.74–8.42) to 0.2 µg (95% CI: 0.01–0.38)] as well as mortality rates &lt;80% were observed with most nets evaluated. Moreover, the biting rates of An. gambiae s.l. (Diptera: Culicidae) inside torn nets increased in line with their fabric integrity loss. These data support the conclusion that future deployment of nets in the field must be strengthened by community sensitization on their correct use in order to postpone as much as possible appearance of holes and loss of insecticidal activity and encourage repairing of torn nets.


2021 ◽  
Author(s):  
Robert D. Kaaya ◽  
Reginald A. Kavishe ◽  
Filemon F. Tenu ◽  
Johnson J. Matowo ◽  
Franklin W. Mosha ◽  
...  

Abstract Plasmodium falciparum parasites lacking histidine-rich protein 2 and 3 (pfhrp2/3) genes have been reported in several parts of the world. These deletions are known to compromise the effectiveness of HRP2-based malaria rapid diagnostic tests (HRP2-RDT). The National Malaria Control Programme (NMCP) in Tanzania adopted HRP2-RDTs as a routine tool for malaria diagnosis in 2009 replacing microscopy in many Health facilities. We investigated pfhrp2/3 deletions in 122 samples from two areas with diverse malaria transmission intensities in Northeastern Tanzania. Pfhrp2 deletion was confirmed in 1.6% of samples while pfhrp3 deletion was confirmed in 50% of samples. We did not find parasites with both pfhrp2 and pfhrp3 deletions among our samples. Results from this study highlight the need for systematic surveillance of pfhrp2/3 deletions in Tanzania to understand their prevalence and determine their impact on the performance of mRDT.


2021 ◽  
Author(s):  
Janvier Bandibabone ◽  
Charles McLoughlin ◽  
Sévérin N'Do ◽  
Chimanuka Bantuzeko ◽  
Vital Byabushi ◽  
...  

Abstract BackgroundMalaria vector control in the Democratic Republic of the Congo is plagued by several major challenges, including inadequate infrastructure, lack of access to health care systems and preventative measures, and more recently the widespread emergence of insecticide resistance among Anopheles mosquitoes. Across 26 provinces, insecticide resistance has been reported from multiple sentinel sites. However, to date, investigation of molecular resistance mechanisms among Anopheles vector populations in DRC has been more limited.MethodsAdult Anopheles gambiae s.l. and Anopheles funestus s.l. were collected from two sites in Sud-Kivu province and one site in Haut-Uélé province and PCR-screened for the presence of 11 resistance mutations, to provide additional information on frequency of resistance mechanisms in the eastern DRC, and to critically evaluate the utility of these markers for prospective country-wide resistance monitoring. ResultsL1014F-kdr and L1014S-kdr were present in 75.9% and 56.7% of An. gambiae s.l. screened, respectively, with some individuals harbouring both resistant alleles. Across the three study sites, L43F-CYP4J5 allele frequency ranged from 0.42-0.52, with evidence for ongoing selection. G119S-ace1 was also identified in all sites but at lower levels. A triple mutant haplotype (comprising the point mutation CYP6P4-I236M, the insertion of a partial Zanzibar-like transposable element and duplication of CYP6AA1) was present at high frequencies. In An. funestus s.l. cis-regulatory polymorphisms in CYP6P9a and CYP6P9b were detected, with allele frequencies ranging from 0.82-0.98 and 0.65-0.83, respectively. ConclusionsThis study screened the most up-to-date panel of DNA-based resistance markers in An. gambiae s.l. and An. funestus s.l. from the eastern DRC, where resistance data is lacking. We identified several new candidate markers (CYP4J5, G119S-ace1, the triple mutant, CYP6P9a and CYP6P9b), which are diagnostic of resistance to major insecticide classes, and warrant future, larger-scale monitoring in the DRC to inform vector control decisions by the National Malaria Control Programme.


Sign in / Sign up

Export Citation Format

Share Document