scholarly journals An algorithm based on DQM with modified trigonometric cubic B-splines for solving coupled viscous Burgers' equations

2018 ◽  
Vol 2018 (1) ◽  
pp. 21-41
Author(s):  
Brajesh Kumar Singh ◽  
Pramod Kumar
Keyword(s):  
2021 ◽  
Vol 209 ◽  
pp. 107430
Author(s):  
Michael F. Rehme ◽  
Fabian Franzelin ◽  
Dirk Pflüger

Atoms ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 50
Author(s):  
Charlotte Froese Fischer

The paper reviews the history of B-spline methods for atomic structure calculations for bound states. It highlights various aspects of the variational method, particularly with regard to the orthogonality requirements, the iterative self-consistent method, the eigenvalue problem, and the related sphf, dbsr-hf, and spmchf programs. B-splines facilitate the mapping of solutions from one grid to another. The following paper describes a two-stage approach where the goal of the first stage is to determine parameters of the problem, such as the range and approximate values of the orbitals, after which the level of accuracy is raised. Once convergence has been achieved the Virial Theorem, which is evaluated as a check for accuracy. For exact solutions, the V/T ratio for a non-relativistic calculation is −2.


2021 ◽  
Vol 381 ◽  
pp. 113779
Author(s):  
Wenbin Hou ◽  
Kai Jiang ◽  
Xuefeng Zhu ◽  
Yuanxing Shen ◽  
Ping Hu

2021 ◽  
Vol 76 (3) ◽  
Author(s):  
Peter Massopust
Keyword(s):  

AbstractThe existence of fundamental cardinal exponential B-splines of positive real order $$\sigma $$ σ is established subject to two conditions on $$\sigma $$ σ and their construction is implemented. A sampling result for these fundamental cardinal exponential B-splines is also presented.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 220
Author(s):  
Alexey Samokhin

We studied, for the Kortweg–de Vries–Burgers equations on cylindrical and spherical waves, the development of a regular profile starting from an equilibrium under a periodic perturbation at the boundary. The regular profile at the vicinity of perturbation looks like a periodical chain of shock fronts with decreasing amplitudes. Further on, shock fronts become decaying smooth quasi-periodic oscillations. After the oscillations cease, the wave develops as a monotonic convex wave, terminated by a head shock of a constant height and equal velocity. This velocity depends on integral characteristics of a boundary condition and on spatial dimensions. In this paper the explicit asymptotic formulas for the monotonic part, the head shock and a median of the oscillating part are found.


Author(s):  
Phumlani G. Dlamini ◽  
Vusi M. Magagula

AbstractIn this paper, we introduce the multi-variate spectral quasi-linearization method which is an extension of the previously reported bivariate spectral quasi-linearization method. The method is a combination of quasi-linearization techniques and the spectral collocation method to solve three-dimensional partial differential equations. We test its applicability on the (2 + 1) dimensional Burgers’ equations. We apply the spectral collocation method to discretize both space variables as well as the time variable. This results in high accuracy in both space and time. Numerical results are compared with known exact solutions as well as results from other papers to confirm the accuracy and efficiency of the method. The results show that the method produces highly accurate solutions and is very efficient for (2 + 1) dimensional PDEs. The efficiency is due to the fact that only few grid points are required to archive high accuracy. The results are portrayed in tables and graphs.


2009 ◽  
Vol 26 (1) ◽  
pp. 75-81 ◽  
Author(s):  
S. Schaefer ◽  
R. Goldman
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document