scholarly journals CONFORMATIONAL SAMPLING IN TEMPLATE-FREE PROTEIN LOOP STRUCTURE MODELING: AN OVERVIEW

2013 ◽  
Vol 5 (6) ◽  
pp. e201302003 ◽  
Author(s):  
Yaohang Li
2021 ◽  
Author(s):  
Tianqi Wu ◽  
Jian Liu ◽  
Zhiye Guo ◽  
Jie Hou ◽  
Jianlin Cheng

Abstract Protein structure prediction is an important problem in bioinformatics and has been studied for decades. However, there are still few open-source comprehensive protein structure prediction packages publicly available in the field. In this paper, we present our latest open-source protein tertiary structure prediction system - MULTICOM2, an integration of template-based modeling (TBM) and template-free modeling (FM) methods. The template-based modeling uses sequence alignment tools with deep multiple sequence alignments to search for structural templates, which are much faster and more accurate than MULTICOM1. The template-free (ab initio or de novo) modeling uses the inter-residue distances predicted by DeepDist to reconstruct tertiary structure models without using any known structure as template. In the blind CASP14 experiment, the average TM-score of the models predicted by our server predictor based on the MULTICOM2 system is 0.720 for 58 TBM (regular) domains and 0.514 for 38 FM and FM/TBM (hard) domains, indicating that MULTICOM2 is capable of predicting good tertiary structures across the board. It can predict the correct fold for 76 CASP14 domains (95% regular domains and 55% hard domains) if only one prediction is made for a domain. The success rate is increased to 3% for both regular and hard domains if five predictions are made per domain. Moreover, the prediction accuracy of the pure template-free structure modeling method on both TBM and FM targets is very close to the combination of template-based and template-free modeling methods. This demonstrates that the distance-based template-free modeling method powered by deep learning can largely replace the traditional template-based modeling method even on TBM targets that TBM methods used to dominate and therefore provides a uniform structure modeling approach to any protein. Finally, on the 38 CASP14 FM and FM/TBM hard domains, MULTICOM2 server predictors (MULTICOM-HYBRID, MULTICOM-DEEP, MULTICOM-DIST) were ranked among the top 20 automated server predictors in the CASP14 experiment. After combining multiple predictors from the same research group as one entry, MULTICOM-HYBRID was ranked no. 5. The source code of MULTICOM2 is freely available at https://github.com/multicom-toolbox/multicom/tree/multicom_v2.0.


Biochimie ◽  
2020 ◽  
Vol 175 ◽  
pp. 85-92 ◽  
Author(s):  
Surbhi Dhingra ◽  
Ramanathan Sowdhamini ◽  
Frédéric Cadet ◽  
Bernard Offmann

10.29007/j5p9 ◽  
2019 ◽  
Author(s):  
Ahmed Bin Zaman ◽  
Amarda Shehu

A central challenge in template-free protein structure prediction is controlling the quality of computed tertiary structures also known as decoys. Given the size, dimensionality, and inherent characteristics of the protein structure space, this is non-trivial. The current mechanism employed by decoy generation algorithms relies on generating as many decoys as can be afforded. This is impractical and uninformed by any metrics of interest on a decoy dataset. In this paper, we propose to equip a decoy generation algorithm with an evolving map of the protein structure space. The map utilizes low-dimensional representations of protein structure and serves as a memory whose granularity can be controlled. Evaluations on diverse target sequences show that drastic reductions in storage do not sacrifice decoy quality, indicating the promise of the proposed mechanism for decoy generation algorithms in template-free protein structure prediction.


2019 ◽  
Vol 17 (06) ◽  
pp. 1940013
Author(s):  
Ahmed Bin Zaman ◽  
Amarda Shehu

An important goal in template-free protein structure prediction is how to control the quality of computed tertiary structures of a target amino-acid sequence. Despite great advances in algorithmic research, given the size, dimensionality, and inherent characteristics of the protein structure space, this task remains exceptionally challenging. It is current practice to aim to generate as many structures as can be afforded so as to increase the likelihood that some of them will reside near the sought but unknown biologically-active/native structure. When operating within a given computational budget, this is impractical and uninformed by any metrics of interest. In this paper, we propose instead to equip algorithms that generate tertiary structures, also known as decoy generation algorithms, with memory of the protein structure space that they explore. Specifically, we propose an evolving, granularity-controllable map of the protein structure space that makes use of low-dimensional representations of protein structures. Evaluations on diverse target sequences that include recent hard CASP targets show that drastic reductions in storage can be made without sacrificing decoy quality. The presented results make the case that integrating a map of the protein structure space is a promising mechanism to enhance decoy generation algorithms in template-free protein structure prediction.


Sign in / Sign up

Export Citation Format

Share Document