scholarly journals Mismatch effect on fatigue crack propagation limit curves of S690QL, S960QL and S960TM type base materials and their gas metal arc welded joints

2020 ◽  
Vol 65 (2) ◽  
pp. 75-86
Author(s):  
János Lukácsa ◽  
Haidar Mobarkb

Nowadays, one of the basic trends in the industry is the environmental impact reduction, in other words the weight decreasing of structural elements and structures, which can be approached by applying different high strength steels. In case of different steel structures, the main manufacturing and joining technology is the welding, the conventional and advanced methods of fusion and pressure welding processes. Beside the weight decreasing, the reliability and safety requirements according to steel structures have significant grown. During the welding process, the welded parts are affected with heat-effect and mechanical loads, which result in inhomogeneous welded joint. The inhomogeneity of the welded joints appears both in microstructural (local) and in geometrical (both local and global) aspects. The changes in microstructure and geometry appear in deflections (basically acceptable), or rather in failures (basically unacceptable); and these influence both the behaviour and the loadability of welded joints. Discontinuities in base materials and their welded joints have especially high danger in case of cyclic loading conditions, which are typical for different structures and structural elements (e.g. bridges, vehicles). There are different standards and prescriptions containing fatigue crack propagation limit curves and rules for the prediction of the crack growth; simple and two-stage crack growth relationships can be found in the literature, most frequently based on the Paris-Erdogan law. The paper summarizes and presents the results according to our fatigue crack growth investigations on Weldox 700E and Weldox 960E quenched and tempered (Q+T) and on Alform 960M thermomechanically treated (TM) high strength steel base materials and their gas metal arc welded joints. The mismatch effect has also been studied; matched, overmatched, undermatched and matched/overmatched (mixed-matched) welded joints were investigated. 15 mm thick plates were used for the investigations, statistical aspects were applied both for presenting the possible crack locations in the real plates, as well as for processing the measured data. Furthermore, the results will be compared with each other, and fatigue crack propagation limit curves will be derived using simple crack growth relationship.

2018 ◽  
Vol 1146 ◽  
pp. 44-56 ◽  
Author(s):  
János Lukács ◽  
Ádám Dobosy ◽  
Marcell Gáspár

The objective of the paper is to present the newest results of our complex research work. In order to determination and comparison of the fatigue resistance, fatigue crack growth tests were performed on different grades of S690QL quenched and tempered, and S960TM thermomechanically rolled high strength steels.15 mmand30 mmthick base materials were used for our investigations. Welded joints were made from these base materials, using gas metal arc welding with matching, overmatching, and undermatching filler metals. In the paper, the performance of the welding experiments will be presented, especially with the difficulties of the filler material selection; along with the results of the fatigue crack growth examinations executed on the base materials and its welded joints. Statistical aspects were applied both for the presenting of the possible locations of the cracks in the base materials and the welded joints and for the processing of the measured data. Furthermore, the results will be compared with each other, and the possibility of derivation of fatigue crack propagation limit curves will be referred.


2014 ◽  
Vol 891-892 ◽  
pp. 563-568 ◽  
Author(s):  
János Lukács ◽  
Marcell Gaspar

There are different prescriptions containing fatigue crack propagation limit curves and rules for the prediction of the crack growth. The research work aimed (i) to determine fatigue crack propagation limit curves for high strength steels and their welded joints, based on the Paris-Erdogan law; (ii) to use the determined limit curves for engineering critical assessment (ECA) calculations. Experiments were performed on different high strength steels and their welded joints; and the propagating cracks in the specimens represent the different possible locations of the real cracks in the structural elements. Fatigue crack growth tests were executed byΔK-decreasing and constant load amplitude methods. The evaluation process consists of six steps, and by means of the selected values a statistical method can be proposed for determination of the limit curves. Engineering critical assessment calculations were performed on a welded structural element having crack like defects.


2014 ◽  
Vol 794-796 ◽  
pp. 371-376 ◽  
Author(s):  
Ákos Meilinger ◽  
János Lukács

The Friction Stir Welding (FSW) is a dynamically developing version of the pressure welding processes. High-quality welded joints can be created using this process for different engineering applications (e. g. automotive parts). Nowadays, the knowing of the properties and the behaviour of the welded joints is an important direction of the investigations, especially under cyclic loading. The research work aimed to demonstrate the behaviour of the friction stir welded joints under cyclic loading conditions. Fatigue Crack Propagation (FCG) experiments were performed on 5754-H22 and 6082-T6 aluminium alloys and their friction stir welded joints. The CT type specimens were cut parallel and perpendicular to the characteristic directions of the base materials and the welded joints, and the notch locations in the specimens of welded joints were different, too. Therefore, the propagating cracks represent the possible directions of the fatigue cracks both on the base materials and on the welded joints. The results of the fatigue crack propagation tests on the welded joints clearly demonstrate the different characteristics of the thermo-mechanically affected zone (TMAZ), the heat affected zone (HAZ), and the advancing (AS) and retreating sides (RS) of the weld nugget (WN). The investigations and their results were compared with each other and with the results can be found in the literature.


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3192 ◽  
Author(s):  
Haijun Chang ◽  
Mengling Shen ◽  
Xiaohua Yang ◽  
Junxia Hou

Welded joints are widely used in the pipeline connection of nuclear power plants. Defects in these joints are an important factor leading to the failure of welded joints. It is critical to study the fatigue crack growth and life prediction methods for the welded joints with defects, to reduce their likelihood. In this paper, we present our study of the uncertainty of fatigue crack propagation and probabilistic life prediction for welded joints of nuclear stainless steel. The standard compact tension (CT) specimens were fabricated according to the American Society for Testing and Materials (ASTM) standard. Fatigue crack propagation tests with different stress ratios were performed on CT specimens, using the Mei Te Si (MTS) fatigue test system. A fatigue crack propagation rate model considering the uncertainty of material parameters, and based on the Paris formula and crack propagation experimental data, was established. A probabilistic life prediction method based on Monte Carlo simulation was developed. The fatigue crack propagation prediction result of a CT specimen was compared with the actual tested result, to verify the effectiveness of the proposed method. Finally, the method was applied to an embedded elliptical crack in welded joints of nuclear stainless steel, to predict the fatigue crack growth life and evaluate the reliability.


2021 ◽  
Vol 8 ◽  
pp. 19
Author(s):  
Eman El Shrief ◽  
Abla El-Megharbel ◽  
Aly El Domiaty ◽  
Hassan Abd El-Hafez

Welded joints are sensitive to fatigue failure due to cyclic loading, as well as fatigue crack propagation influenced by the distribution of welding residual stress. In this study, the fatigue crack propagation rates in butt-welded joints for 304 stainless steel sheets were evaluated in the presence of welding residual stresses. The analysis consisted of two separate models: first, a 3D-finite element (FE) model was used to predict the residual stresses due to welding; second, a numerical study was undertaken to predict fatigue crack propagation in the presence and absence of residual stress using the extended finite element method (XFEM). The crack growth model (NASGRO) and available experimental data were applied to verify the simulation results. The XFEM without residual stress effects shows good agreement with the experimental data and the NASGRO model. However, in the presence of residual stress, the simulation results show less agreement with the NASGRO model. The level and the nature of residual stress have significant effects on crack growth. A faster crack propagation rate is recognized due to the effect of tensile residual stress at the crack tip, while a higher resistance to crack growth is developed due to a compressive residual stress field.


2020 ◽  
Vol 10 (1) ◽  
pp. 28-38
Author(s):  
Haidar Mobark ◽  
János Lukács

Welded structures cannot be produced without imperfections, cracks or crack like defects. Among the structural steels, 960 MPa strength category represents a reliable application possibility. Consumables are also available, but the behaviour of mismatch types under cyclic loading condition is not yet clear. In order to know the fatigue crack propagation resistance of 960 MPa strength category steels and their gas metal arc welded joints fatigue crack growth tests were performed. The tests results were analysed and fatigue crack propagation limit curves were determined.


Sign in / Sign up

Export Citation Format

Share Document