Manufacturing Review
Latest Publications


TOTAL DOCUMENTS

207
(FIVE YEARS 102)

H-INDEX

9
(FIVE YEARS 3)

Published By Edp Sciences

2265-4224

2022 ◽  
Vol 9 ◽  
pp. 1
Author(s):  
Thywill Cephas Dzogbewu ◽  
Nathaniel Amoah ◽  
Samuel Korateng Fianko ◽  
Sampson Afrifa ◽  
Deon de Beer

Additively manufactured products offer extensive variety to consumers than many forms of production. Additive manufacturing (AM) production system allows consumer involvement, which has created a huge but largely untapped market. However, there is a gap between production and the market. Therefore, AM towards product production which focuses on the Commercialization of Additive Manufactured Products (CAMPs) is imperative. Despite the importance of CAMP, specific focus of research on the commercialization of additively manufactured products are scanty. There is also a lack of knowledge about the conceptual structure, intellectual structure, research trends, and the thematic structure of CAMP research. To contribute to this stream of research, this study takes an exploratory dimension by conducting a bibliometric analysis of publications on the CAMP. The R package and its associated biblioshiny were the software used. The study reveals that studies on CAMP started in 2007 with renewed interest starting from 2012. Importantly, it was found that the most cited articles focused on the economic potential of AM products in the home and specific industries. Also, there is an increasing focus on the business models that are necessary for the commercialisation of AM products. Generally, there is a shift in focus from the firm to the market. However, this is a niche area and requires more attention. Themes such as commercialization are just emerging, and researchers need to devote more time and effort to the consumer side of the commercialization of AM products.


2022 ◽  
Vol 9 ◽  
pp. 2
Author(s):  
Raviraj Shetty ◽  
Adithya Hegde

From last two decades, plant fiber reinforced polymer/polyester composites have been effectively used in structural and automotive applications. Researchers and manufacturers are looking forward for an effective utilization of these composites. However, despite the outstanding properties in terms of load bearing capacity and environmental sustainability of plant fibers the uptake of these composites are limited due to its poor machinability characteristics. Hence in this paper, Taguchi based fuzzy logic model for the optimization and prediction of process output variable such as surface roughness during Abrasive Water Jet Machining (AWJM) of new class of plant fiber reinforced polyester composites i.e., Discontinuously Reinforced Caryota Urens Fiber Polyester (DRCUFP) composites has been explored. Initially machining experiments has been carried out using L27 orthogonal array obtained from Taguchi Design of Experiments (TDOE). Finally, Taguchi based fuzzy logic model has been developed for optimisation and prediction of surface roughness. From the extensive experimentation using TDOE it was observed that the optimum cutting conditions for obtaining minimum surface roughness value, water pressure (A): 300 bar, traverse speed (B): 50 mm, stand of distance: 1 mm, abrasive flow rate: 12 g/s, depth of cut (C): 5 mm and Abrasive Size:200 microns. Further from FLM, it is observed that minimum water pressure (A): 100 bar, traverse speed (B): 50 mm, stand of distance: 1 mm, abrasive flow rate: 8 g/s, depth of cut (C): 5 mm and abrasive size:100 microns gave higher surface roughness values (3.47 microns) than that at maximum water pressure (A): 300 bar, traverse speed (B): 150 mm, stand of distance: 4 mm, abrasive flow rate: 12 g/s, depth of cut (C): 15 mm and abrasive size:200 microns the surface roughness values (3.25 microns).


2021 ◽  
Vol 8 ◽  
pp. 27
Author(s):  
Joseph Ajibade Omotoyinbo ◽  
Isiaka Oluwole Oladele ◽  
Jamiu Mosebolatan Jabar ◽  
Joseph Olatunde Borode ◽  
Kenneth Kanayo Alaneme ◽  
...  

This work investigates the influence of kaolin and dolomite on the properties of polyurethane foam. The selected fillers were pulverized and sieved to obtained < 90 μm that were used as reinforcements in the polyurethane matrix in a randomly dispersed mode. The matrix constituents were mixed in the same ratio while fillers were introduced via a one-shot system approach in predetermined proportions of 3–7 wt.%. The work was carried out to identify optimum fillers to be utilized in the production of polyurethane rigid foams given the effect of the fillers on the physical, mechanical, and chemical properties of the foam. FTIR, XRF, and SEM and mechanical property tests were carried out on the filled polyurethane foam. The presence of the fillers in the foam showed a rupture in the structure of the foams with the cells having similar arrangements. The addition of dolomite and Kaolin degrades the sulfonic acid groups and promoted the appearance of Si–O stretching vibration band. The density, hardness, flexural and compressive strengths of the polyurethane foam were enhanced with the the addition of dolomite and kaolin particles.


2021 ◽  
Vol 8 ◽  
pp. 18
Author(s):  
Dionysios N. Markatos ◽  
Christos V. Katsiropoulos ◽  
Konstantinos I. Tserpes ◽  
Spiros G. Pantelakis

In the present study, a holistic End-of-Life (EoL) Index is introduced to serve as a decision support tool for choosing the optimal recycling process among a number of alternative recycling techniques of CFRP waste. For the choice of the optimal recycling process, quality of the recycled fibers as well as cost and environmental impact of the recycling methods under consideration, are accounted for. Quality is interpreted as the reusability potential of the recycled fibers; that is quantified through the equivalent volume fraction of recycled fibers that balances the mechanical properties of a composite composed of a certain volume fraction of virgin fibers. The proposed Index is offering an estimated balanced score, quantifying a trade-off between the reusability potential of the recycled fibers as well as the cost and the environmental impact of the recycling methods considered.


2021 ◽  
Vol 8 ◽  
pp. 7
Author(s):  
Xiaoyu Liu ◽  
Xiao Han ◽  
Shiping Zhao ◽  
Yi Qin ◽  
Wan-Adlan Wan-Nawang ◽  
...  

There is an increasingly recognised requirement for high dimensional accuracy in micro-bent parts. Springback has an important influence on dimensional accuracy and it is significantly influenced by various process parameters. In order to optimise process parameters and improve dimensional accuracy, an approach to quantify the influence of these parameters is proposed in this study. Experiments were conducted on a micro W-bending process by using an I-optimal design method, breaking through the limitations of the traditional methods of design of experiment (DOE). The mathematical model was established by response surface methodology (RSM). Statistical analysis indicated that the developed model was adequate to describe the relationship between process parameters and springback. It was also revealed that the foil thickness was the most significant parameter affecting the springback. Moreover, the foil thickness and grain size not only affected the dimensional accuracy, but also had noteworthy influence on the springback behaviour in the micro W-bending process. By applying the proposed model, the optimum process parameters to minimize springback and improve the dimensional accuracy were obtained. It is evident from this study that the I-optimal design-based RSM is a promising method for parameter optimisation and dimensional accuracy improvement in the micro-bending process.


2021 ◽  
Vol 8 ◽  
pp. 22
Author(s):  
Samuel Olukayode Akinwamide ◽  
Miltia Lesufi ◽  
Ojo Jeremiah Akinribide ◽  
Bukola Joseph Babalola ◽  
Peter Apata Olubambi

Aluminium matrix composites have been developed to replace other conventional engineering materials in specific industries where enhanced properties are required. The corrosion susceptibility of sintered unreinforced aluminium and composites in chloride medium (AMCs) were studied. The powders of pure as-received aluminium (matrix) and particles of ferrotitanium and silicon carbide particles were homogeneously dispersed using ball milling technique. Powder metallurgy route was utilised for consolidating the milled powders into a sintered compact. Microstructural examination of the compacted pure aluminium and composites confirmed an even distribution of the reinforcements in the aluminium matrix. The produced composites also recorded an improved corrosion resistance in a corrosive medium of 3.5 wt.% laboratory prepared sodium chloride, from the potentiodynamic polarization and chronoamperometry (potentiostatic) tests. The corroded specimens were further assessed for pitting using a field emission scanning electron microscope (FE-SEM). The resistance of the fabricated samples to corrosion was improved upon the addition of TiFe and SiC reinforcements.


2021 ◽  
Vol 8 ◽  
pp. 23
Author(s):  
Guowei Li ◽  
Yong Wang ◽  
Xuexia Xu

The electric field distortion caused by the high voltage current environment in the cable terminal will greatly increase the failure probability and reduce the operation safety; therefore, it is necessary to ensure the uniform distribution of the electric field in the terminal. This paper briefly introduced the high-voltage cable terminal and non-linear materials. The traditional silicone rubber and the silicone rubber added with nano-SiO2 were prepared. The electrical conductivity of the two silicone rubbers was tested, and the electric field of the cable terminal was simulated. The results demonstrated that the nano-SiO2 improved silicone rubber had a higher non-linear conductivity and was less affected by temperature. The calculation results of the simulation model also showed that the distribution of the internal field strength was more uniform, and the maximum field strength on the reinforced insulation was smaller after the improved silicone rubber was used as the reinforced insulation.


2021 ◽  
Vol 8 ◽  
pp. 6
Author(s):  
Saheed Adeoye Babalola ◽  
Kenneth Kanayo Alaneme ◽  
Samuel Ranti Oke ◽  
Lesley Heath Chown ◽  
Nthabiseng Beauty Maledi ◽  
...  

The response of two different types of aluminium matrix composites (AMCs) reinforced with silicon carbide ceramic particulates or nickel metallic particulates to hot compression testing parameters was evaluated. The composites were produced via two-step stir-casting technique. Axisymmetric compression testing was performed on the samples at different deformation temperatures of 220 and 370 °Ϲ, 0.5 and 5 s−1 strain rates and total strains of 0.6 and 1.2. The initial and post-deformed microstructures were studied using optical and scanning electron microscopy. The results show that flow stress was significantly influenced by imposed deformation parameters and the type of reinforcements used in the AMCs. Nickel particulate reinforced aluminium matrix composite (AMC) showed superior resistance to deformation in comparison with silicon carbide reinforced AMC under the different testing conditions. In both AMCs, work hardening, dynamic recovery and dynamic recrystallisation influenced their response to imposed parameters. The signature of dynamic recrystallisation was very apparent in aluminium matrix composite reinforced with nickel particulates.


2021 ◽  
Vol 8 ◽  
pp. 17
Author(s):  
Gururaj Bolar ◽  
Shrikrishna Nandkishor Joshi

The selection of optimal process parameters is essential while machining thin-wall parts since it influences the quality of the product and affects productivity. Dimensional accuracy affects the product quality, whereas the material removal rate alters the process productivity. Therefore, the study investigated the effect of tool diameter, feed per tooth, axial and radial depth of cut on wall deflection, and material removal rate. The selected process parameters were found to significantly influence the in-process deflection and thickness deviation due to the generation of unfavorable cutting forces. Further, an increase in the material removal rate resulted in chatter, thus adversely affecting the surface quality during the final stages of machining. Considering the conflicting nature of the two performance measures, Non-dominated Sorting Genetic Algorithm-II was adopted to solve the multi-objective optimization problem. The developed model could predict the optimal combination of process variables needed to lower the in-process wall deflection and maintain a superior surface finish while maintaining a steady material removal rate.


2021 ◽  
Vol 8 ◽  
pp. 29
Author(s):  
Desmond Edem Primus Klenam ◽  
Gabriel Seun Ogunwande ◽  
Taiwo Omotosho ◽  
Blessing Ozah ◽  
Nthabiseng Beauty Maledi ◽  
...  

An overview of welding methods and process parameters and its effects on mechanical behaviour and structural integrity of magnesium and its alloys are discussed. These alloys are less dense and beneficial structural alloys for improved energy efficiency, eco-friendliness and driver of circular economic model for sustainable design and innovative ecosystem. While the application of Mg-alloys is projected to increase, understanding the mechanical behaviour and structural integrity of welded joints are critical. Thus, fusion and solid-state welding processes of these alloys are discussed with emphasis on mechanical characterization. Laser welding is the most effective fusion welding technique for most Mg alloys whereas, the predominant solid-state method is friction stir welding. The importance of process variables such as heat inputs, welding velocity (speed) and post weld treatments on the microstructural evolution, on mechanical and physical properties of the distinct zones of the weld joints are described. The weldment is the most susceptible to failure due to phase transformation, defects such as microporosity and relatively coarse grain sizes after solidification. The implication of the design of quality weld joints of Mg alloys are explored with areas for future research directions briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document