scholarly journals Characterization of myxomycetes in two different soils by TRFLPanalysis of partial 18S rRNA gene sequences

mycosphere ◽  
2015 ◽  
Vol 6 (2) ◽  
pp. 216-227 ◽  
Author(s):  
T Hoppe
Parasite ◽  
2018 ◽  
Vol 25 ◽  
pp. 27 ◽  
Author(s):  
Rie Murata ◽  
Jun Suzuki ◽  
Ayako Hyuga ◽  
Takayuki Shinkai ◽  
Kenji Sadamasu

Human Sarcocystis infections are known to be caused by the ingestion of raw or undercooked beef or pork containing mature sarcocysts of Sarcocystis hominis or S. suihominis, respectively. In addition, several cases of parasitic food poisoning in Japan have recently been reported after consumption of raw horsemeat containing sarcocysts of S. fayeri. In this study, the presence of sarcocysts in 28 horsemeat and 121 beef samples collected in Tokyo was investigated. Sarcocysts of S. fayeri were found in 16 horsemeat samples. Sarcocysts of S. hominis were not detected in beef samples, while sarcocysts of S. cruzi were detected in 60 beef samples. In addition, S. hirsuta and S. bovini were isolated only from New Zealand beef samples. Bradyzoites in sarcocysts collected from 62/73 sarcocyst-positive refrigerated horsemeat and beef samples were determined to be viable. Molecular analysis of S. fayeri 18S rRNA gene sequences revealed that intraspecific variation among eight individual bradyzoites from a single sarcocyst was as high as 9.8%. In contrast, mitochondrial cytochrome c oxidase subunit 1 (mtDNA cox1) gene sequences from the six fragments of a single sarcocyst were 100% identical. Sarcocysts of S. bovini isolated from beef also exhibited intraspecific variation in 18S rRNA gene sequences and had to be cloned before sequencing, while mtDNA cox1 gene sequences were obtained by direct sequencing. Therefore, we conclude that molecular analysis of the mtDNA cox1 gene is the most useful for identification of Sarcocystis species. This study provides the first published partial sequence of the S. fayeri mtDNA cox1 gene.


2008 ◽  
Vol 74 (6) ◽  
pp. 1740-1747 ◽  
Author(s):  
Andrew Dopheide ◽  
Gavin Lear ◽  
Rebecca Stott ◽  
Gillian Lewis

ABSTRACT Free-living protozoa are thought to be of fundamental importance in aquatic ecosystems, but there is limited understanding of their diversity and ecological role, particularly in surface-associated communities such as biofilms. Existing eukaryote-specific PCR primers were used to survey 18S rRNA gene sequence diversity in stream biofilms but poorly revealed protozoan diversity, demonstrating a need for protozoan-targeted primers. Group-specific PCR primers targeting 18S rRNA genes of the protozoan phylum Ciliophora were therefore designed and tested using DNA extracted from cultured protozoan isolates. The two most reliable primer combinations were applied to stream biofilm DNA, followed by cloning and sequencing analysis. Of 44 clones derived from primer set 384F/1147R, 86% were of probable ciliate origin, as were 25% of 44 clones detected by primer set 121F/1147R. A further 29% of 121F/1147R-detected clones matched sequences from the closely related phylum Apicomplexa. The highly ciliate-specific primer set 384F/1147R was subsequently used in PCRs on biofilm DNA from four streams exhibiting different levels of human impact, revealing differences in ciliate sequence diversity in samples from each site. Of a total of 240 clones, 73% were of probable ciliate origin; 54 different putative ciliate sequences were detected from throughout seven taxonomic ciliate classes. Sequences from Oligohymenophorea were most commonly detected in all samples, followed by either Spirotrichea or Phyllopharyngea. Restriction fragment length polymorphism profile-based analysis of clones suggested a potentially higher level of diversity than did sequencing. Nevertheless, newly designed PCR primers 384F/1147R were considered to provide an effective molecular basis for characterization of ciliate diversity in stream biofilms.


2000 ◽  
Vol 66 (5) ◽  
pp. 2220-2223 ◽  
Author(s):  
Una M. Morgan ◽  
Lihua Xiao ◽  
Paul Monis ◽  
Abbie Fall ◽  
Peter J. Irwin ◽  
...  

ABSTRACT Genetic and phylogenetic characterization ofCryptosporidium isolates at two loci (18S rRNA gene and heat shock gene) from both Australian and United States dogs demonstrated that dog-derived Cryptosporidium isolates had a distinct genotype which is conserved across geographic areas. Phylogenetic analysis provided support for the idea that the “dog” genotype is, in fact, a valid species.


2019 ◽  
Vol 19 (4) ◽  
Author(s):  
Ambra Viviani ◽  
Rodolfo Bernardi ◽  
Andrea Cavallini ◽  
Elisabetta Rossi

Abstract Torymus sinensis Kamijo (Hymenoptera: Torymidae) is an alien parasitoid that is used in many areas of the world for biological control the Asian chestnut gall wasp, Dryocosmus kuriphilus Yasumatsu (Hymenoptera: Cynipidae). In Italy, this parasitoid was imported from Japan in 2003 and subsequently multiplied and released throughout the country. In this study, a phylogenetic investigation was carried out on insects from three different sites in northern Tuscany (Italy). Moreover, the possible hybridization between T. sinensis and some native Torymus species was evaluated. The conserved region 18S rRNA gene and the hypervariable ITS2 (Internal Transcribed Spacer 2) region of the ribosomal cistrone were selected as molecular markers. Sequencing the amplified products, after cloning, ruled out any hybridization between T. sinensis and the native Torymus species, and also confirmed the presence of two haplotypes for the Tuscan population of T. sinensis both for the region of the 18S rRNA gene as well as for the ITS2 region. These results confirm that the environmental impact of the alien parasitoid T. sinensis in the study site is acceptable, although an extensive and repeated monitoring would be desirable.


Sign in / Sign up

Export Citation Format

Share Document