scholarly journals A Hybrid Model Based on EMD-Feature Selection and Random Forest Method for Medical Data Forecasting

Author(s):  
Duen-Huang Huang ◽  
Chih-Hung Tsai ◽  
Hao-En Chueh ◽  
Liang-Ying Wei
2021 ◽  
pp. 1-15
Author(s):  
Zhaozhao Xu ◽  
Derong Shen ◽  
Yue Kou ◽  
Tiezheng Nie

Due to high-dimensional feature and strong correlation of features, the classification accuracy of medical data is not as good enough as expected. feature selection is a common algorithm to solve this problem, and selects effective features by reducing the dimensionality of high-dimensional data. However, traditional feature selection algorithms have the blindness of threshold setting and the search algorithms are liable to fall into a local optimal solution. Based on it, this paper proposes a hybrid feature selection algorithm combining ReliefF and Particle swarm optimization. The algorithm is mainly divided into three parts: Firstly, the ReliefF is used to calculate the feature weight, and the features are ranked by the weight. Then ranking feature is grouped according to the density equalization, where the density of features in each group is the same. Finally, the Particle Swarm Optimization algorithm is used to search the ranking feature groups, and the feature selection is performed according to a new fitness function. Experimental results show that the random forest has the highest classification accuracy on the features selected. More importantly, it has the least number of features. In addition, experimental results on 2 medical datasets show that the average accuracy of random forest reaches 90.20%, which proves that the hybrid algorithm has a certain application value.


2022 ◽  
Vol 10 (1) ◽  
pp. 0-0

: The medical diagnostic process works very similarly to the Case Based Reasoning (CBR) cycle scheme. CBR is a problem solving approach based on the reuse of past experiences called cases. To improve the performance of the retrieval phase, a Random Forest (RF) model is proposed, in this respect we used this algorithm in three different ways (three different algorithms): Classic Random Forest (CRF) algorithm, Random Forest with Feature Selection (RF_FS) algorithm where we selected the most important attributes and deleted the less important ones and Weighted Random Forest (WRF) algorithm where we weighted the most important attributes by giving them more weight. We did this by multiplying the entropy with the weight corresponding to each attribute.We tested our three algorithms CRF, RF_FS and WRF with CBR on data from 11 medical databases and compared the results they produced. We found that WRF and RF_FS give better results than CRF. The experiemental results show the performance and robustess of the proposed approach.


Author(s):  
Maria Irmina Prasetiyowati ◽  
Nur Ulfa Maulidevi ◽  
Kridanto Surendro

Random Forest is a supervised classification method based on bagging (Bootstrap aggregating) Breiman and random selection of features. The choice of features randomly assigned to the Random Forest makes it possible that the selected feature is not necessarily informative. So it is necessary to select features in the Random Forest. The purpose of choosing this feature is to select an optimal subset of features that contain valuable information in the hope of accelerating the performance of the Random Forest method. Mainly for the execution of high-dimensional datasets such as the Parkinson, CNAE-9, and Urban Land Cover dataset. The feature selection is done using the Correlation-Based Feature Selection method, using the BestFirst method. Tests were carried out 30 times using the K-Cross Fold Validation value of 10 and dividing the dataset into 70% training and 30% testing. The experiments using the Parkinson dataset obtained a time difference of 0.27 and 0.28 seconds faster than using the Random Forest method without feature selection. Likewise, the trials in the Urban Land Cover dataset had 0.04 and 0.03 seconds, while for the CNAE-9 dataset, the difference time was 2.23 and 2.81 faster than using the Random Forest method without feature selection. These experiments showed that the Random Forest processes are faster when using the first feature selection. Likewise, the accuracy value increased in the two previous experiments, while only the CNAE-9 dataset experiment gets a lower accuracy. This research’s benefits is by first performing feature selection steps using the Correlation-Base Feature Selection method can increase the speed of performance and accuracy of the Random Forest method on high-dimensional data.


Sign in / Sign up

Export Citation Format

Share Document