scholarly journals A Design Study on a Phase Change Heat Exchanger of an Environmental Control System for a POD

2012 ◽  
Vol 16 (1) ◽  
pp. 64-71
Author(s):  
Yung-Jun Yoo ◽  
Seong-Ki Min
2015 ◽  
Author(s):  
Andre Silva ◽  
Nayeff Najjar ◽  
Shalabh Gupta ◽  
Paul D'Orlando ◽  
Rhonda Walthall

2015 ◽  
Vol 764-765 ◽  
pp. 294-299
Author(s):  
Jian Ma ◽  
Chen Lu ◽  
Hong Mei Liu

The aircraft environmental control system (ECS) is a critical aircraft system that provides the appropriate environmental conditions to ensure the safe transport of air passengers and equipment. The functionality and reliability of ECS have elicited an increasing amount of attention in recent years. The heat exchanger is a particularly significant component of ECS because its failure reduces the system’s efficiency and can lead to catastrophic consequences. Health assessment and fault diagnosis for the heat exchanger are necessary to perform maintenance and prevent risks in a timely manner. This paper presents fault-related parameter estimation methods based on strong tracking filter (STF) and logistic regression (LR) algorithm for heat exchanger health assessment and root cause classification, respectively. Heat exchanger fault simulation is conducted to generate performance degradation data, through which the proposed methods are validated. Results demonstrate that the proposed methods are capable of providing stable, effective, and accurate heat exchanger health assessment and root cause classification.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 855
Author(s):  
Han Yang ◽  
Chunxin Yang ◽  
Xingjuan Zhang ◽  
Xiugan Yuan

The environmental control system (ECS) is one of the most important systems in the aircraft used to regulate the pressure, temperature and humidity of the air in the cabin. This study investigates the influences of different architectures on the thermal performance and network structure of ECS. The refrigeration and pressurization performances of ECS with four different architectures are analyzed and compared by the endoreversible thermodynamic analysis method, and their external and internal responses have also been discussed. The results show that the connection modes of the heat exchanger have minor effects on the performance of ECSs, but the influence of the air cycle machine is obvious. This study attempts to abstract the ECS as a network structure based on the graph theory, and use entropy in information theory for quantitative evaluation. The results provide a theoretical basis for the design of ECS and facilitate engineers to make reliable decisions.


2021 ◽  
Author(s):  
Shoaib A. Shah

A Diagnostics, Prognostics and Health Management (DPHM) solution is proposed for the operation of the aircraft environmental control system (ECS) cross flow heat exchanger. In particular, a dynamic model is derived and applied to on-line detection of fouling in the aircraft ECS cross flow plate-and-fin heat exchanger. Predictive maintenance actions can be scheduled as per the on-line detected fouling status of the specific component, supporting condition based maintenance. The heat exchanger model is of the lumped state space form, where the state consists of the core and fin temperatures. The ratios of the thermal capacities of the masses of the two air streams to the thermal capacity of the core itself are neglected, and the model parameters' functional dependency on mass flow rate and influence of secondary surfaces (fins) are taken into account in order to accurately describe the dynamic behavior of the heat exchanger. Since the parameters are functions of mass flow rate, as are the core and fin temperatures, and the model is nonlinear in the state variables, an extended Kalman filtering (EKF) algorithm is applied to estimate the state dependent parameters. The effectiveness of the model's formulation is supported by the quality of the corresponding predicted results, which in turn are validated via experimental tests.


2001 ◽  
Vol 123 (4) ◽  
pp. 760-769 ◽  
Author(s):  
Jose V. C. Vargas ◽  
Adrian Bejan ◽  
David L. Siems

This paper documents the process of determining the internal geometric configuration of a component by optimizing the global performance of the installation that uses the component. The example chosen is the crossflow heat exchanger used in the environmental control system of a modern aircraft. The optimization of global performance is achieved by minimizing the total entropy generation rate of the installation. There are three degrees of freedom in the heat exchanger configuration (the length-to-width and height-to-width aspect ratios, and the separator plate spacing ratio), which is subjected to two global constraints: total component volume, and total wall material volume (or weight/density) of wall material. Numerical results show how the optimal configuration responds to changes in specified external parameters such as volume, weight, Mach number, diffuser inlet cross-sectional area, and the pressure at which the cabin air is initially bled from the engine compressor. It is shown that the optimal configuration is robust and that major features such as the ratios of channel spacings and flow lengths are relatively insensitive to changes in some of the external parameters. It is also shown that the optimal heat exchanger geometry is insensitive to the thermodynamic irreversibility caused by discharging the used ram air into the ambient.


2021 ◽  
Author(s):  
Shoaib A. Shah

A Diagnostics, Prognostics and Health Management (DPHM) solution is proposed for the operation of the aircraft environmental control system (ECS) cross flow heat exchanger. In particular, a dynamic model is derived and applied to on-line detection of fouling in the aircraft ECS cross flow plate-and-fin heat exchanger. Predictive maintenance actions can be scheduled as per the on-line detected fouling status of the specific component, supporting condition based maintenance. The heat exchanger model is of the lumped state space form, where the state consists of the core and fin temperatures. The ratios of the thermal capacities of the masses of the two air streams to the thermal capacity of the core itself are neglected, and the model parameters' functional dependency on mass flow rate and influence of secondary surfaces (fins) are taken into account in order to accurately describe the dynamic behavior of the heat exchanger. Since the parameters are functions of mass flow rate, as are the core and fin temperatures, and the model is nonlinear in the state variables, an extended Kalman filtering (EKF) algorithm is applied to estimate the state dependent parameters. The effectiveness of the model's formulation is supported by the quality of the corresponding predicted results, which in turn are validated via experimental tests.


Sign in / Sign up

Export Citation Format

Share Document