scholarly journals Droop Control for Parallel Inverers in Islanded Microgrid Considering Unbalanced Low-Voltage Line Impedances

2013 ◽  
Vol 18 (4) ◽  
pp. 387-396 ◽  
Author(s):  
Kyung-Bae Lim ◽  
Jaeho Choi
Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1835 ◽  
Author(s):  
Qiuxia Yang ◽  
Dongmei Yuan ◽  
Xiaoqiang Guo ◽  
Bo Zhang ◽  
Cheng Zhi

Based on the concept of cyber physical system (CPS), a novel hierarchical control strategy for islanded microgrids is proposed in this paper. The control structure consists of physical and cyber layers. It’s used to improve the control effect on the output voltages and frequency by droop control of distributed energy resources (DERs), share the reactive power among DERs more reasonably and solve the problem of circumfluence in microgrids. The specific designs are as follows: to improve the control effect on voltages and frequency of DERs, an event-trigger mechanism is designed in the physical layer. When the trigger conditions in the mechanism aren’t met, only the droop control (i.e., primary control) is used in the controlled system. Otherwise, a virtual leader-following consensus control method is used in the cyber layer to accomplish the secondary control on DERs; to share the reactive power reasonably, a method of double virtual impedance is designed in the physical layer to adjust the output reactive power of DERs; to suppress circumfluence, a method combined with consensus control without leader and sliding mode control (SMC) is used in the cyber layer. Finally, the effectiveness of the proposed hierarchical control strategy is confirmed by simulation results.


2015 ◽  
Vol 30 (6) ◽  
pp. 3133-3141 ◽  
Author(s):  
Hua Han ◽  
Yao Liu ◽  
Yao Sun ◽  
Mei Su ◽  
Josep M. Guerrero

Sign in / Sign up

Export Citation Format

Share Document