An Adaptive Droop Control Scheme Based on Sliding Mode Control for Parallel Buck Converters in Low-Voltage DC Microgrids

Author(s):  
Yu Li ◽  
Fei Tang ◽  
Xiaoqing Wei ◽  
Fanghua Qin ◽  
Tongyan Zhang
Author(s):  
Xinxin Li ◽  
Wen Wang ◽  
Zichen Chen

Magnetostrictive actuator, for its merits of relatively low voltage and high force, has been increasingly applied in many applications, such as vibration control, aviation, positioner, etc. At low drive level, magnetostrictive actuator presents linear relation between strain or displacement and input voltage or input current, while non-linear appears when applied moderate or high drive level. To achieve accurate control for high drive level, non-linear, including saturation and hysteresis, must be compensated. Sliding mode control, a robust control scheme, can handle these non-linear. As magnetostrictive actuator modelled in Jiles-Atherton model, the relation of magnetic field H and bulk magnetization M, hysteresis, is divided into anhysteresis and deviation from anhysteresis. Saturation can be compensated by inversion of anhysteresis (free-hysteresis) and then, hysteresis, represented as the deviation from anhysteresis, is compensated with sliding mode control.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Jiangbin Wang ◽  
Ling Liu ◽  
Chongxin Liu ◽  
Xiaoteng Li

The main purpose of the paper is to control chaotic oscillation in a complex seven-dimensional power system model. Firstly, in view that there are many assumptions in the design process of existing adaptive controllers, an adaptive sliding mode control scheme is proposed for the controlled system based on equivalence principle by combining fixed-time control and adaptive control with sliding mode control. The prominent advantage of the proposed adaptive sliding mode control scheme lies in that its design process breaks through many existing assumption conditions. Then, chaotic oscillation behavior of a seven-dimensional power system is analyzed by using bifurcation and phase diagrams, and the proposed strategy is adopted to control chaotic oscillation in the power system. Finally, the effectiveness and robustness of the designed adaptive sliding mode chaos controllers are verified by simulation.


Actuators ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 54
Author(s):  
Minh-Thien Tran ◽  
Dong-Hun Lee ◽  
Soumayya Chakir ◽  
Young-Bok Kim

This article proposes a novel adaptive super-twisting sliding mode control scheme with a time-delay estimation technique (ASTSMC-TDE) to control the yaw angle of a single ducted-fan unmanned aerial vehicle system. Such systems are highly nonlinear; hence, the proposed control scheme is a combination of several control schemes; super-twisting sliding mode, TDE technique to estimate the nonlinear factors of the system, and an adaptive sliding mode. The tracking error of the ASTSMC-TDE is guaranteed to be uniformly ultimately bounded using Lyapunov stability theory. Moreover, to enhance the versatility and the practical feasibility of the proposed control scheme, a comparison study between the proposed controller and a proportional-integral-derivative controller (PID) is conducted. The comparison is achieved through two different scenarios: a normal mode and an abnormal mode. Simulation and experimental tests are carried out to provide an in-depth investigation of the performance of the proposed ASTSMC-TDE control system.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2365
Author(s):  
Mohammadreza Moradian ◽  
Jafar Soltani ◽  
Mohamed Benbouzid ◽  
Abbas Najjar-Khodabakhsh

In this paper, a sliding mode control is presented for direct torque and stator flux control of interior permanent magnet synchronous motor in a rotor speed sensorless drive system. The control scheme is developed in a specific synchronous rotating reference frame (X-Y) in which the stator current space vector coincides with the direct (X) axis. For this control technique no need to have any knowledge of machine parameters such as stator two-axis inductances, rotor permanent magnets flux linkage, and even the rotor initial position. However, the on-line actual stator resistance value is required to estimate the stator flux components in the stator stationary two-axis reference frame. In this control strategy, two simple methods are described for estimating the rotor speed and stator resistance. Some simulation and experimental results are presented to support the validity and effectiveness of the proposed control scheme.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Dan-xu Zhang ◽  
Yang-wang Fang ◽  
Peng-fei Yang ◽  
You-li Wu ◽  
Tong-xin Liu

This paper proposed a finite time convergence global sliding mode control scheme for the second-order multiple models control system. Firstly, the global sliding surface without reaching law for a single model control system is designed and the tracking error finite time convergence and global stability are proved. Secondly, we generalize the above scheme to the second-order multimodel control system and obtain the global sliding mode control law. Then, the convergent and stable performances of the closed-loop control system with multimodel controllers are proved. Finally, a simulation example shows that the proposed control scheme is more effective and useful compared with the traditional sliding mode control scheme.


Sign in / Sign up

Export Citation Format

Share Document