scholarly journals The Max-Plus Algebra of the Natural Numbers has no Finite Equational Basis

1999 ◽  
Vol 6 (33) ◽  
Author(s):  
Luca Aceto ◽  
Zoltán Ésik ◽  
Anna Ingólfsdóttir

This paper shows that the collection of identities which hold in<br />the algebra N of the natural numbers with constant zero, and binary<br />operations of sum and maximum is not finitely based. Moreover, it<br />is proven that, for every n, the equations in at most n variables that<br />hold in N do not form an equational basis. As a stepping stone in<br />the proof of these facts, several results of independent interest are<br />obtained. In particular, explicit descriptions of the free algebras in the<br />variety generated by N are offered. Such descriptions are based upon<br />a geometric characterization of the equations that hold in N, which<br />also yields that the equational theory of N is decidable in exponential<br />time.

1983 ◽  
Vol 26 (1) ◽  
pp. 9-12 ◽  
Author(s):  
R. Padmanabhan

AbstractThe principle of duality for Boolean algebra states that if an identity ƒ = g is valid in every Boolean algebra and if we transform ƒ = g into a new identity by interchanging (i) the two lattice operations and (ii) the two lattice bound elements 0 and 1, then the resulting identity ƒ = g is also valid in every Boolean algebra. Also, the equational theory of Boolean algebras is finitely based. Believing in the cosmic order of mathematics, it is only natural to ask whether the equational theory of Boolean algebras can be generated by a finite irredundant set of identities which is already closed for the duality mapping. Here we provide one such equational basis.


2010 ◽  
Vol 4 (1) ◽  
pp. 81-105 ◽  
Author(s):  
ROBIN HIRSCH ◽  
SZABOLCS MIKULÁS

We prove that algebras of binary relations whose similarity type includes intersection, union, and one of the residuals of relation composition form a nonfinitely axiomatizable quasivariety and that the equational theory is not finitely based. We apply this result to the problem of the completeness of the positive fragment of relevance logic with respect to binary relations.


2017 ◽  
Vol 18 ◽  
pp. 95-102 ◽  
Author(s):  
Jacob M. Hundley ◽  
Zak C. Eckel ◽  
Emily Schueller ◽  
Kenneth Cante ◽  
Scott M. Biesboer ◽  
...  

2016 ◽  
Vol Vol. 17 no. 3 (Combinatorics) ◽  
Author(s):  
Inna Mikhaylova

International audience Epigroups are semigroups equipped with an additional unary operation called pseudoinversion. Each finite semigroup can be considered as an epigroup. We prove the following theorem announced by Zhil'tsov in 2000: the equational theory of the class of all epigroups coincides with the equational theory of the class of all finite epigroups and is decidable. We show that the theory is not finitely based but provide a transparent infinite basis for it.


2022 ◽  
Vol 47 (1) ◽  
pp. 261-281
Author(s):  
Damian Dąbrowski

In a recent article (2021) we introduced and studied conical energies. We used them to prove three results: a characterization of rectifiable measures, a characterization of sets with big pieces of Lipschitz graphs, and a sufficient condition for boundedness of nice singular integral operators. In this note we give two examples related to sharpness of these results. One of them is due to Joyce and Mörters (2000), the other is new and could be of independent interest as an example of a relatively ugly set containing big pieces of Lipschitz graphs.


2008 ◽  
Vol 142 (1) ◽  
Author(s):  
Slavyana Geninska ◽  
Enrico Leuzinger

Sign in / Sign up

Export Citation Format

Share Document