scholarly journals NOD2 is Involved in the Inflammatory Response after Cerebral Ischemia-Reperfusion Injury and Triggers NADPH Oxidase 2-Derived Reactive Oxygen Species

2015 ◽  
Vol 11 (5) ◽  
pp. 525-535 ◽  
Author(s):  
Huiqing Liu ◽  
Xinbing Wei ◽  
Lingjun Kong ◽  
Xiaoqian Liu ◽  
Li Cheng ◽  
...  
2019 ◽  
Vol 17 (3) ◽  
pp. 322-328
Author(s):  
Luan Lan ◽  
Cao Lanxiu ◽  
Zhu Lei ◽  
Sun Jianhua

Diosmetin, a natural flavonoid, exhibits a variety of pharmacologic activities including inhibition of inflammation and oxidation. Therefore, its potential role in the management of cerebral ischemia/reperfusion (I/R) injury remains to be examined. In this study, we explored the underlying molecular mechanisms of diosmetin effects on cerebral ischemia/reperfusion injury in vitro. The results show that hypoxia/reoxygenation treatment of PC12 cells decreased cell viability and increased apoptosis, inflammation and oxidative stress. Diosmetin improved cellular viability, decreased lactate dehydrogenase release, and inhibited apoptosis in hypoxia-/reoxygenation-treated PC12 cells. Furthermore, diosmetin effectively inhibited the NF-kB signaling pathway to attenuate the inflammatory response. Also, diosmetin inhibited reactive oxygen species generation to attenuate I/R injury-induced oxidative stress in PC12 cells probably through the activation of Nrf 2/HO-1 pathway. Therefore, diosmetin effectively protected cells from I/R injury in nerve cells by scavenging reactive oxygen species by activating Nrf 2/HO-1 pathway and inhibiting inflammation by the suppression of NF-kB signaling pathway. Diosmetin can be regarded as a potential agent for cerebral ischemia/reperfusion injury treatment.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Ke Fu ◽  
Dewei Zhang ◽  
Yinglian Song ◽  
Min Xu ◽  
Ruixia Wu ◽  
...  

Cerebral ischemia is a series of harmful reactions, such as acute necrosis of tissue, inflammation, apoptosis, autophagy, and blood-brain barrier injury, due to the insufficient blood supply to the brain. Inflammatory response and gut microbiota imbalance are important concomitant factors of cerebral ischemia and may increase the severity of cerebral ischemia through the gut-brain axis. Qishiwei Zhenzhu pills (QSW) contain more than 70 kinds of medicinal materials, which have the effects of anti-cerebral infarction, anti-convulsion, anti-dementia, and so on. It is a treasure of Tibetan medicine commonly used in the treatment of cerebral ischemia in Tibetan areas. In this study, we gave rats QSW (66.68 mg/kg) once by gavage in advance and then immediately established the rat middle cerebral artery occlusion (MCAO) model. After 24 hours of treatment, the neuroprotection, intestinal pathology, and gut microbiota were examined. The results showed that QSW could significantly reduce the neurobehavioral abnormalities and cerebral infarction rate in MCAO rats. Furthermore, qPCR, western blot, and immunohistochemistry results showed that QSW could effectively inhibit IL-6, IL-1β, and other inflammatory factors so as to effectively reduce the inflammatory response of MCAO rats. Furthermore, QSW could improve intestinal integrity and reduce intestinal injury. 16S rRNA sequencing showed that QSW could significantly improve the gut microbiota disorder of MCAO rats. Specifically, at the phylum level, it can regulate the abundance of Firmicutes and Proteobacteria in the gut microbiota of rats with MCAO. At the genus level, it can adjust the abundance of Escherichia and Shigella. At the species level, it can adjust the abundance of Lactobacillus johnsonii and Lactobacillus reuteri. All in all, this study is the first to show that QSW can reduce the severity of cerebral ischemia-reperfusion injury by regulating gut microbiota and inhibiting the inflammatory response.


2001 ◽  
Vol 21 (6) ◽  
pp. 683-689 ◽  
Author(s):  
John S. Beech ◽  
Jill Reckless ◽  
David E. Mosedale ◽  
David J. Grainger ◽  
Steve C. R. Williams ◽  
...  

Cerebral ischemia–reperfusion injury is associated with a developing inflammatory response with pathologic contributions from vascular leukocytes and endogenous microglia. Signaling chemokines orchestrate the communication between the different inflammatory cell types and the damaged tissue leading to cellular chemotaxis and lesion occupation. Several therapies aimed at preventing this inflammatory response have demonstrated neuroprotective efficacy in experimental models of stroke, but to date, few investigators have used the chemokines as potential therapeutic targets. In the current study, the authors investigate the neuroprotective action of NR58–3.14.3, a novel broad-spectrum inhibitor of chemokine function (both CXC and CC types), in a rat model of cerebral ischemia–reperfusion injury. Rats were subjected to 90 minutes of focal ischemia by the filament method followed by 72 hours of reperfusion. Both the lesion volume, measured by serial magnetic resonance imaging, and the neurologic function were assessed daily. Intravenous NR58–3.14.3 was administered, 2 mg/kg bolus followed by 0.5 mg/kg · hour constant infusion for the entire 72-hour period. At 72 hours, the cerebral leukocytic infiltrate, tumor necrosis factor-α (TNF-α), and interleukin-8 (IL-8)-like cytokines were analyzed by quantitative immunofluorescence. NR58–3.14.3 significantly reduced the lesion volume by up to 50% at 24, 48, and 72 hours post–middle cerebral artery occlusion, which was associated with a marked functional improvement to 48 hours. In NR58–3.14.3-treated rats, the number of infiltrating granulocytes and macrophages within perilesional regions were reduced, but there were no detectable differences in inflammatory cell numbers within core ischemic areas. The authors reported increased expression of the cytokines, TNF-α, and IL-8–like cytokines within the ischemic lesion, but no differences between the NR58–3.14.3-treated rats and controls were reported. Although chemokines can have pro-or antiinflammatory action, these data suggest the overall effect of chemokine up-regulation and expression in ischemia–reperfusion injury is detrimental to outcome.


Sign in / Sign up

Export Citation Format

Share Document