scholarly journals Targeted imaging and inhibition of triple-negative breast cancer metastases by a PDGFRβ aptamer

Theranostics ◽  
2018 ◽  
Vol 8 (18) ◽  
pp. 5178-5199 ◽  
Author(s):  
Simona Camorani ◽  
Billy Samuel Hill ◽  
Francesca Collina ◽  
Sara Gargiulo ◽  
Maria Napolitano ◽  
...  
2021 ◽  
pp. 106689692199071
Author(s):  
Eric Statz ◽  
Julie M. Jorns

Following lung cancer, breast cancer is the second most common metastatic tumor to the brain, of which triple-negative breast cancer (TNBC) and human epidermal growth factor receptor 2+ (HER2+) breast cancer are the most common subtypes. TNBC does not have standard immunoprofiles and can be difficult to distinguish from other metastases. A tissue microarray was created from 47 patients with breast cancer metastases to the brain and 12 paired breast primaries. Of 47 breast cancer metastases, 24 were HER2+, 14 were TNBC, and 9 were luminal. Forty-five were cytokeratin 7 (CK7) positive, 36 were GATA-binding protein 3 (GATA3) positive, 7 were Sry-related HMg-Box gene 10 (SOX-10) positive, 20 were mammaglobin positive, and 19 were gross cystic disease fluid protein 15 positive. At least one of the CK7, GATA3, or SOX-10 was positive in all TNBC metastases. A panel of CK7, GATA3, and SOX-10 is complementary in the diagnosis of breast cancer brain metastasis. SOX-10 appears to be a specific but not particularly sensitive marker in this context.


2017 ◽  
Vol 53 (87) ◽  
pp. 11937-11940 ◽  
Author(s):  
Ying Liu ◽  
Ding-Kun Ji ◽  
Lei Dong ◽  
Nicolas Galanos ◽  
Yi Zang ◽  
...  

Supramolecular self-assembly between perylenediimide-based glycoclusters and a red-emitting fluorophore produces structurally uniform and stable glyco-dots amenable to targeted fluorogenic imaging of liver and triple-negative breast cancer cells.


2019 ◽  
Vol 1 (Supplement_1) ◽  
pp. i2-i2
Author(s):  
Kamil Wojnicki ◽  
Agata Kochalska ◽  
Anna Gieryng ◽  
Tomasz Czernicki ◽  
Ewa Matyja ◽  
...  

Abstract Brain metastasis from different cancers, including lung, breast, melanoma, colorectal or renal cell carcinoma is relatively common and its frequency increases with a prolonged survival of cancer patients. New anti-cancer therapies frequently fail to reduce metastatic burden. While the important role of tumor-associated macrophages as pro-tumorigenic cells facilitating tissue remodeling, invasion and metastasis is well documented, much less is known about the immune microenvironment of brain metastases and potential mechanisms that mediate interactions of cancer cells with brain immune cells - microglia. Triple-negative breast cancer metastases to the brain were discovered in 46% of patients. We evaluated the abundance and morphology of microglia on sections from breast cancer metastases using immunohistochemistry. We found that microglia cells are activated, surround the breast tumor cells and do not infiltrate the solid tumor. Searching for a potential attractant of microglia, we determined osteopontin levels in six human breast cancer cell lines and found upregulation of osteopontin in transformed cells, with the highest level in the triple-negative MDA-MB-231 cells. MDA-MB-231 cells activated primary murine microglia cultures when co-cultured. Invasion of MDA-MB-231 cells in co-cultures with murine immortalized BV2 microglial cells and human SV40 immortalized microglia was increased, as demonstrated using Matrigel Invasion Assay. Using immunofluorescence we detected osteopontin in cancer cells in human breast cancer metastases. Moreover, we found that minocycline, a clinically used antibiotic, reduces the osteopontin production in human breast cancer cells and the most sensitive cells were MDA-MB-231 cells. Our study shows that metastatic cancer cells may employ microglia to facilitate extravasation and colonization of brain parenchyma. We postulate that osteopontin mediates interactions between microglia and metastatic cancer cells and minocycline may interfere with those interactions. Funding: TEAM TECH CORE FACILITY FNP: Development of comprehensive diagnostics and personalized therapy in neuro-oncology


2017 ◽  
Vol 53 (70) ◽  
pp. 9793-9796 ◽  
Author(s):  
Hai-Hao Han ◽  
Chang-Zheng Wang ◽  
Yi Zang ◽  
Jia Li ◽  
Tony D. James ◽  
...  

We show that supramolecular core–glycoshell nanodots are capable of targeted imaging and photodynamic therapy of liver and triple-negative breast cancer cells.


2009 ◽  
Vol 69 (05) ◽  
Author(s):  
EC Schest ◽  
H Cerwenka ◽  
A El-Shabrawi ◽  
H Bacher ◽  
HJ Mischinger

Planta Medica ◽  
2015 ◽  
Vol 81 (11) ◽  
Author(s):  
AJ Robles ◽  
L Du ◽  
S Cai ◽  
RH Cichewicz ◽  
SL Mooberry

Sign in / Sign up

Export Citation Format

Share Document