scholarly journals Minimal and maximal solutions for a fractional boundary value problem at resonance on the half line

2018 ◽  
pp. 299-307 ◽  
Author(s):  
Rabah Khaldi ◽  
A. Guezane-Lakoud
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
O. F. Imaga ◽  
S. A. Iyase

AbstractIn this work, we consider the solvability of a fractional-order p-Laplacian boundary value problem on the half-line where the fractional differential operator is nonlinear and has a kernel dimension equal to two. Due to the nonlinearity of the fractional differential operator, the Ge and Ren extension of Mawhin’s coincidence degree theory is applied to obtain existence results for the boundary value problem at resonance. Two examples are used to validate the established results.


2016 ◽  
Vol 56 (1) ◽  
pp. 143-153 ◽  
Author(s):  
Katarzyna Szymańska-Dębowska

Abstract This work is devoted to the existence of solutions for a system of nonlocal resonant boundary value problem $$\matrix{{x'' = f(t,x),} \hfill & {x'(0) = 0,} \hfill & {x'(1) = {\int_0^1 {x(s)dg(s)},} }} $$ where f : [0, 1] × ℝk → ℝk is continuous and g : [0, 1] → ℝk is a function of bounded variation.


Sign in / Sign up

Export Citation Format

Share Document