scholarly journals Deep-sea temperatures across two early Eocene hyperthermal events based on clumped isotope paleothermometry

2021 ◽  
Author(s):  
Tobias Agterhuis ◽  
Martin Ziegler ◽  
Lucas Lourens
2021 ◽  
Author(s):  
Tobias Agterhuis ◽  
Martin Ziegler ◽  
Lucas Lourens

The early Eocene (56–48 Ma) hothouse experienced the highest CO2 levels of the Cenozoic, as well as the occurrence of multiple transient global warming events, so-called hyperthermals. The deep ocean constitutes a stable and vast heat reservoir in the climate system, and hence compromises a robust setting to estimate past global mean temperatures. However, available deep-sea temperature reconstructions rely on uncertain assumptions of non-thermal influences. Here, we apply for the first time the carbonate clumped isotope paleothermometer (Δ47), a proxy not governed by these uncertainties, on early Eocene benthic foraminifera to evaluate South Atlantic deep-sea temperatures across two hyperthermal events (ETM2 and H2; ~54 Ma). In comparison to the conventional δ18O-based estimates, our new temperature reconstructions indicate two and a half degrees warmer deep water conditions, i.e. 13.2±1.9 °C (95% Confidence Interval) for background state, and average deep-sea warming of 3.3±2.9 °C (95% CI) during these hyperthermal events. These findings imply a reassessment of the assumed isotope composition of the ancient seawater and of a potential pH effect on foraminiferal oxygen isotopes. On a broad scale, our Δ47-based overall warmer deep-sea temperatures provide new evidence for high climate sensitivity during the early Eocene hothouse.


2011 ◽  
Vol 75 (16) ◽  
pp. 4416-4425 ◽  
Author(s):  
Nivedita Thiagarajan ◽  
Jess Adkins ◽  
John Eiler

2015 ◽  
Vol 11 (3) ◽  
pp. 1795-1820 ◽  
Author(s):  
V. Lauretano ◽  
K. Littler ◽  
M. Polling ◽  
J. C. Zachos ◽  
L. J. Lourens

Abstract. Recent studies have shown that the Early Eocene Climatic Optimum (EECO) was preceded by a series of short-lived global warming events, known as hyperthermals. Here we present high-resolution benthic stable carbon and oxygen isotope records from ODP Sites 1262 and 1263 (Walvis Ridge, SE Atlantic) between ∼54 and ∼52 million years ago, tightly constraining the character, timing, and magnitude of six prominent hyperthermal events. These events, that include Eocene Thermal Maximum (ETM) 2 and 3, are studied in relation to orbital forcing and long-term trends. Our findings reveal an almost linear relationship between δ13C and δ18O for all these hyperthermals, indicating that the eccentricity-paced co-variance between extreme perturbations in the exogenic carbon pool and deep-sea temperatures persisted during the onset of the EECO, in accord with previous observations for the Paleocene Eocene Thermal Maximum (PETM) and ETM2. The covariance of δ13C and δ18O during H2 and I2, which are the second pulses of the "paired" hyperthermal events ETM2-H2 and I1-I2, deviates with respect to the other events. This could relate to a relatively higher contribution of an isotopically heavier source of carbon, such as peat or permafrost, and/or to climate feedbacks/local changes in circulation. Finally, the δ18O records of the two sites show a systematic offset with on average 0.2‰ heavier values for the shallower Site 1263, which we link to a slightly heavier (e.g. more saline) isotope composition of the intermediate water mass reaching the northeastern flank of the Walvis Ridge compared to that of the deeper northwestern water mass at Site 1262.


Sign in / Sign up

Export Citation Format

Share Document