deep sea corals
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 26)

H-INDEX

27
(FIVE YEARS 3)

2021 ◽  
Author(s):  
◽  
Malindi Gammon

<p>Calcifying corals provide important habitat complexity in the deep-sea and are consistently associated with a biodiversity of fish and other invertebrates. Little is understood about how deep-sea corals may respond to predicted scenarios of ocean acidification (OA), but any predicted changes will have wider impacts on the ecosystem.   Colonies of Solenosmilia variabilis, a species of deep-sea coral found in the waters surrounding New Zealand, were collected during a cruise in March 2014 from the Louisville Seamount chain. Over 12-months, coral samples were maintained in temperature controlled (~3.5°C) continuous flow-through tanks. A control group of coral colonies was held in seawater with pH 7.88 and a treatment group in pH 7.65. These two pH levels were designed to reflect current pH conditions and end-of-century conditions, respectively. In addition to investigating changes in growth and morphology, measurements of respiration and intracellular pH (pHi) were taken after a mid-term (6 months for respiration; 9 months for pHi) and long-term (12 months for both respiration and pHi) exposure period. An established method used in measuring the pHi of shallow water corals was adapted for use with deep-sea corals for the first time. pHi was independent from the seawater treatment and ranged from 7.67 – 8.30. Respiration rate was not influenced by the reduced seawater pH tested here. Respiration rates were highly variable, ranging from 0.065 to 1.756 μg O2 g-1 protein h-1 and pHi ranged from 7.67 – 8.30. Yearly growth rates were also variable, ranging from 0.53 to 3.068 mm year-1, and again showed no detectable difference between the treatment and control colonies. However, a loss in the colouration of coral skeletons was observed in the treatment group and was attributed to a loss of tissue. This could indicate a reallocation of energy, allowing for the maintenance of those other physiological parameters measured here (e.g. growth and respiration rates). If this is indeed occurring, it would be consistent with the idea of phenotypic plasticity, where corals can alternate between soft-bodied and fossilizing forms, allowing them to survive past periods of environmental stress.   This research is an important first step towards understanding the sensitivity of deep-sea corals to OA and the potential for acclimation, and suggests that in many respects, S. variabilis might not be susceptible to end-of-century projections of OA. Nevertheless, the observed tissue loss is interesting and warrants further investigation to assess its long-term implications. Furthermore, the impacts of greater levels of OA, and the interactive effects of other ecological parameters such as food availability, need to be tested.</p>


2021 ◽  
Author(s):  
◽  
Malindi Gammon

<p>Calcifying corals provide important habitat complexity in the deep-sea and are consistently associated with a biodiversity of fish and other invertebrates. Little is understood about how deep-sea corals may respond to predicted scenarios of ocean acidification (OA), but any predicted changes will have wider impacts on the ecosystem.   Colonies of Solenosmilia variabilis, a species of deep-sea coral found in the waters surrounding New Zealand, were collected during a cruise in March 2014 from the Louisville Seamount chain. Over 12-months, coral samples were maintained in temperature controlled (~3.5°C) continuous flow-through tanks. A control group of coral colonies was held in seawater with pH 7.88 and a treatment group in pH 7.65. These two pH levels were designed to reflect current pH conditions and end-of-century conditions, respectively. In addition to investigating changes in growth and morphology, measurements of respiration and intracellular pH (pHi) were taken after a mid-term (6 months for respiration; 9 months for pHi) and long-term (12 months for both respiration and pHi) exposure period. An established method used in measuring the pHi of shallow water corals was adapted for use with deep-sea corals for the first time. pHi was independent from the seawater treatment and ranged from 7.67 – 8.30. Respiration rate was not influenced by the reduced seawater pH tested here. Respiration rates were highly variable, ranging from 0.065 to 1.756 μg O2 g-1 protein h-1 and pHi ranged from 7.67 – 8.30. Yearly growth rates were also variable, ranging from 0.53 to 3.068 mm year-1, and again showed no detectable difference between the treatment and control colonies. However, a loss in the colouration of coral skeletons was observed in the treatment group and was attributed to a loss of tissue. This could indicate a reallocation of energy, allowing for the maintenance of those other physiological parameters measured here (e.g. growth and respiration rates). If this is indeed occurring, it would be consistent with the idea of phenotypic plasticity, where corals can alternate between soft-bodied and fossilizing forms, allowing them to survive past periods of environmental stress.   This research is an important first step towards understanding the sensitivity of deep-sea corals to OA and the potential for acclimation, and suggests that in many respects, S. variabilis might not be susceptible to end-of-century projections of OA. Nevertheless, the observed tissue loss is interesting and warrants further investigation to assess its long-term implications. Furthermore, the impacts of greater levels of OA, and the interactive effects of other ecological parameters such as food availability, need to be tested.</p>


Oceanography ◽  
2021 ◽  
Vol 34 (2) ◽  
Author(s):  
Cheryl Dybas

As we age, our skeletons often become riddled with osteoporosis, a disease in which the body loses too much bone. As a result, our hips and wrists become weak and may break. Could the same thing happen to the skeletons of coral reefs? Recent research says yes, and points to a weakening of deep-sea corals’ “bones” from ocean acidification.


Oceans ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 351-385
Author(s):  
Luis Somoza ◽  
José L. Rueda ◽  
Olga Sánchez-Guillamón ◽  
Teresa Medialdea ◽  
Blanca Rincón-Tomás ◽  
...  

In this work, we integrate five case studies harboring vulnerable deep-sea benthic habitats in different geological settings from mid latitude NE Atlantic Ocean (24–42° N). Data and images of specific deep-sea habitats were acquired with Remoted Operated Vehicle (ROV) sensors (temperature, salinity, potential density, O2, CO2, and CH4). Besides documenting some key vulnerable deep-sea habitats, this study shows that the distribution of some deep-sea coral aggregations (including scleractinians, gorgonians, and antipatharians), deep-sea sponge aggregations and other deep-sea habitats are influenced by water masses’ properties. Our data support that the distribution of scleractinian reefs and aggregations of other deep-sea corals, from subtropical to north Atlantic could be dependent of the latitudinal extents of the Antarctic Intermediate Waters (AAIW) and the Mediterranean Outflow Waters (MOW). Otherwise, the distribution of some vulnerable deep-sea habitats is influenced, at the local scale, by active hydrocarbon seeps (Gulf of Cádiz) and hydrothermal vents (El Hierro, Canary Island). The co-occurrence of deep-sea corals and chemosynthesis-based communities has been identified in methane seeps of the Gulf of Cádiz. Extensive beds of living deep-sea mussels (Bathymodiolus mauritanicus) and other chemosymbiotic bivalves occur closely to deep-sea coral aggregations (e.g., gorgonians, black corals) that colonize methane-derived authigenic carbonates.


2021 ◽  
Vol 8 ◽  
Author(s):  
Danielle M. DeLeo ◽  
Amanda Glazier ◽  
Santiago Herrera ◽  
Alexandria Barkman ◽  
Erik E. Cordes

Resource extraction from the ocean comes with ecosystem-wide risks, including threats to its biota such as the habitat forming corals that support elevated biomass and biodiversity. Despite catastrophic incidents like the Deepwater Horizon oil spill (DWHOS) disaster that occurred in 2010, offshore oil and gas drilling continues to occur around the world. Previous work investigating the toxicity of oil and the chemical dispersant used in an attempt to mitigate the effects of the DWHOS revealed that the dispersant elicits a stronger, negative physiological response than oil alone. However, little is known regarding the specific ways in which these anthropogenic pollutants impact organisms at the cellular level. To investigate the impacts of each pollutant and their synergistic effects on corals, we analyzed the transcriptional responses of the deep-sea octocorals Callogorgia delta and Paramuricea type B3 following 12 h of exposure to oil, dispersant, and mixtures of oil and dispersant. Analyses revealed that the highest levels of significant differential gene expression were found among the treatments containing dispersant, which corresponds to the significant effects observed in physiological experiments. Functional analyses of annotated transcripts further suggest both species- and colony-specific responses to the exposures, likely due to underlying cellular and physiological differences. However, some commonalities were observed among the responses to chemical stress across treatments and species, including immune and cellular stress responses, altered energy metabolism, and oxidative stress, elucidating how corals respond to chemical pollutants. As resource extraction is an ongoing threat, this study demonstrates the importance of considering the varied and diverse responses of biota to anthropogenic disturbances and the implications of introducing chemicals into vulnerable ecosystems like those associated with deep-sea corals.


2021 ◽  
Vol 9 ◽  
Author(s):  
Sang Chen ◽  
Eloise F. M. Littley ◽  
James W. B. Rae ◽  
Christopher D. Charles ◽  
Jess F. Adkins

A conservative element in seawater, uranium is readily incorporated into the aragonitic skeletons of scleractinian corals, making them an important paleoclimate archive that can be absolutely dated with U-Th techniques. In addition, uranium concentrations (U/Ca ratios) in corals have been suggested to be influenced by the temperature and/or carbonate ion concentration of the ambient seawater based on empirical calibrations. Microsampling techniques have revealed strong heterogeneities in U/Ca within individual specimens in both surface and deep-sea corals, suggesting a biological control on the U incorporation into the skeletons. Here we further explore the mechanism of uranium incorporation in coral skeletons with the deep-sea species Desmophyllum dianthus, an ideal test organism for the biomineralization processes due to its relatively constant growth environment. We find a negative correlation between bulk coral U/Ca and temperature as well as ambient pH and [CO32–] that is consistent with previous studies. By sampling the growth bands of individual corals, we also find a twofold change in U/Ca within individual corals that is strongly correlated with the δ18O, δ13C, and other Me/Ca ratios of the bands. A similar correlation between U/Ca and stable isotopes as well as other Me/Ca ratios are observed in bulk deep-sea coral samples. With a numerical coral calcification model, we interpret the U/Ca-stable isotope correlation as a result of changes in uranium speciation in response to internal pH elevations in the extracellular calcifying fluid (ECF) of the corals, and suggest that the Ca2UO2(CO3)3(aq) complex, the dominant U species in seawater, may be the major species incorporated into the coral skeleton. Therefore, the correlation between U/Ca and ambient [CO32–] is likely a result of the response of the biomineralization process, especially the magnitude of internal pH elevation, to the growth environment of the corals. Our data suggest overall lower alkalinity pump rates in corals from low saturation seawater compared to those from high saturation seawater, and possible increases in Ca2+ supply from active pumping relative to seawater transport in response to the environmental stress of low saturation.


2021 ◽  
Author(s):  
Sang Chen ◽  
Eloise Littley ◽  
James Rae ◽  
Chris Charles ◽  
Yunbin Guan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document