vital effects
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 31)

H-INDEX

28
(FIVE YEARS 2)

Geosciences ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 419
Author(s):  
Hubert Wierzbowski

Oxygen isotopes are widely used in palaeoenvironmental and palaeoclimatic studies as they record variations in the precipitation temperature of biogenic carbonates and phosphates. Problems associated with the preservation state of fossils, selection of the proper temperature equation, vital effects occurring during biomineralization, habitat effects of organisms as well as salinity, bathymetry and water circulation changes limit, however, the applicability of oxygen isotopes to reconstruction of ancient environmental settings. The progress of oxygen isotope studies, temperature calculations and ambiguities of the isotope record are discussed in this paper. The same applies to the methods of retrieving reliable temperature signals and the record of water chemistry changes based on well-preserved calcareous and phosphatic fossils. Sometimes neglected importance of sedimentological and faunistic data associated with sea-level changes and salinity variations is emphasised as an important tool for refinement of the temperature trends of epeiric sedimentary basins. In addition, published case datasets and new laboratory techniques, including micro-area and clumped isotope analyses, are presented to demonstrate examples and prospective ways of extension of the scope of palaeoenvironmental research. The provided information may be used in discussion and a critical review of published oxygen isotope data and their palaeoenvironmental interpretations.


Geology ◽  
2021 ◽  
Author(s):  
Emily C. Geyman ◽  
Adam C. Maloof

The carbon isotopic (δ13C) composition of shallow-water carbonates often is interpreted to reflect the δ13C of the global ocean and is used as a proxy for changes in the global carbon cycle. However, local platform processes, in addition to meteoric and marine diagenesis, may decouple carbonate δ13C from that of the global ocean. We present new δ13C measurements of benthic foraminifera, solitary corals, calcifying green algae, ooids, coated grains, and lime mud from the modern Great Bahama Bank. We find that vital effects, cross-shelf seawater chemistry gradients, and meteoric diagenesis produce carbonate with δ13C variability rivaling that of the past two billion years of Earth history. Leveraging Walther’s Law, we illustrate how these local δ13C signals can find their way into the stratigraphic record of bulk carbonate.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0245605
Author(s):  
Nicolai Schleinkofer ◽  
Jacek Raddatz ◽  
David Evans ◽  
Axel Gerdes ◽  
Sascha Flögel ◽  
...  

Acesta excavata (Fabricius, 1779) is a slow growing bivalve from the Limidae family and is often found associated with cold-water coral reefs along the European continental margin. Here we present the compositional variability of frequently used proxy elemental ratios (Mg/Ca, Sr/Ca, Na/Ca) measured by laser-ablation mass spectrometry (LA-ICP-MS) and compare it to in-situ recorded instrumental seawater parameters such as temperature and salinity. Shell Mg/Ca measured in the fibrous calcitic shell section was overall not correlated with seawater temperature or salinity; however, some samples show significant correlations with temperature with a sensitivity that was found to be unusually high in comparison to other marine organisms. Mg/Ca and Sr/Ca measured in the fibrous calcitic shell section display significant negative correlations with the linear extension rate of the shell, which indicates strong vital effects in these bivalves. Multiple linear regression analysis indicates that up to 79% of elemental variability is explicable with temperature and salinity as independent predictor values. Yet, the overall results clearly show that the application of Element/Ca (E/Ca) ratios in these bivalves to reconstruct past changes in temperature and salinity is likely to be complicated due to strong vital effects and the effects of organic material embedded in the shell. Therefore, we suggest to apply additional techniques, such as clumped isotopes, in order to exactly determine and quantify the underlying vital effects and possibly account for these. We found differences in the chemical composition between the two calcitic shell layers that are possibly explainable through differences of the crystal morphology. Sr/Ca ratios also appear to be partly controlled by the amount of magnesium, because the small magnesium ions bend the crystal lattice which increases the space for strontium incorporation. Oxidative cleaning with H2O2 did not significantly change the Mg/Ca and Sr/Ca composition of the shell. Na/Ca ratios decreased after the oxidative cleaning, which is most likely a leaching effect and not caused by the removal of organic matter.


2021 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Ebrahim Talebi ◽  
Habibeh Ghazanfarpour ◽  
Reyhane Ghazanfarpoor ◽  
Salim Bouchentouf ◽  
Maryam Khosravinezhad

Background: Antioxidant enzymes and selenium in semen plasma have vital effects on reducing lipid peroxidation of spermatozoid membrane in elderly organisms by preventing the destructive effects of reactive oxygen species. Therefore, the use of antioxidants and selenium is essential for normal testicular function and spermatogenesis. Methods: In this experimental study, 88 male Wistar rats aged 2.5 months (young) and 11 Winstar aged months (old) were separated into 4 groups of control, placebo, experimental 1 (0.2 mg/kg BW), and experimental 2 (0.4). Rats encountered weekly surgery after a week of receiving different treatments. Resection of their testes was used for histological studies. Results: The number of spermatocytes, spermatid, and spermatozoa in young and old rats increased during the study period. In young rats, the highest number of these cells remarked in the third and fourth weeks of the experiment using selenium nanoparticles (ranged from 165.3 to 285.3 × 106). For old rates, the highest number of the abovementioned cells observed in the second week of the experiment (ranged from 143.3 to 146.7 × 106). Variables of treatment, week, and age presented significant effects on the number of testicular germ cells. Also, applied treatments had no significant effect on the sperm quality characteristics of rats. The number of Sertoli and Leydig cells did not show a significant difference compared to the control group. The results showed a positive and highly significant correlation between spermatozoid, spermatocytes, and spermatocytes. The findings also indicated the same genetic and environmental effects on the traits. Therefore, any spermatocyte shift will have a direct influence on the spermatozoid. Conclusions: This study demonstrated that using selenium nanoparticles in young and old age groups in rats could improve testicular germ cells, especially in the old group. Therefore, with growing age and decreasing sperm quality, selenium nanoparticles can be used due to their positive effect on sperm parameters and their low health risk.


2021 ◽  
Vol 31 (04) ◽  
pp. 2150060
Author(s):  
Yangyang Lv ◽  
Lijuan Chen ◽  
Fengde Chen ◽  
Zhong Li

In this paper, we consider an SI epidemic model incorporating additive Allee effect and time delay. The primary purpose of this paper is to study the dynamics of the above system. Firstly, for the model without time delay, we demonstrate the existence and stability of equilibria for three different cases, i.e. with weak Allee effect, with strong Allee effect, and in the critical case. We also investigate the existence and uniqueness of Hopf bifurcation and limit cycle. Secondly, for the model with time delay, the stability of equilibria and the existence of Hopf bifurcation are discussed. All the above show that both additive Allee effect and time delay have vital effects on the prevalence of the disease.


2021 ◽  
Author(s):  
Michael Henehan ◽  
Christa Klein-Gebbinck ◽  
Gavin Foster ◽  
Jill Wyman ◽  
Mathis Hain ◽  
...  

<p>Boron isotope ratios, as measured in marine calcium carbonate, are a proven tracer of past seawater and calcifying fluid pH and thus a powerful tool for the reconstruction of past atmospheric CO<sub>2</sub> and monitoring of coral physiology. For such applications, understanding the inorganic baseline upon which foraminiferal vital effects or coral pH upregulation are superimposed should be an important prerequisite. Yet, investigations into boron isotope fractionation in synthetic CaCO<sub>3 </sub>polymorphs have often reported variable and even conflicting results, implying that we may not fully understand pathways of boron incorporation into calcium carbonate.  Here we address this topic with experimental data from calcite and aragonite precipitated across a range of pH in the presence of both Mg and Ca. We confirm the results of previous studies that the boron isotope composition of inorganic aragonite precipitates closely reflects that of aqueous borate ion, but that calcites display a higher degree of scatter, and diverge from the boron isotope composition of borate ion at low pH. We discuss these findings with reference to the simultaneous incorporation of other trace and minor elements, and highlight a number of mechanisms by which crystal growth mechanisms may influence the concentration and isotope composition of boron in CaCO<sub>3</sub>. In particular, we highlight the potential importance of surface electrostatics in driving variability in published synthetic carbonate datasets. Importantly for palaeo-reconstruction, however, these electrostatic effects are likely to play a much more minor role during natural precipitation of biogenic carbonates.</p>


2021 ◽  
Author(s):  
Sierra Petersen ◽  
Allison Curley ◽  
Stewart Edie ◽  
Rachel Mohr ◽  
Elizabeth Oliphant ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Sang Chen ◽  
Eloise Littley ◽  
James Rae ◽  
Chris Charles ◽  
Yunbin Guan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document