scholarly journals Complexation of Sn with Boom Clay Natural Organic Matter and its effect on Sn sorption onto Illite, Montmorillonite and Boom Clay

2021 ◽  
Author(s):  
Delphine Durce ◽  
Sonia Salah ◽  
Norbert Maes ◽  
Lian Wang ◽  
Stéphane Brassinnes
2008 ◽  
Vol 1107 ◽  
Author(s):  
Alice Ionescu ◽  
Norbert Maes ◽  
Dirk Mallants

AbstractIn Belgium, the Boom Clay formation is considered to be the reference formation for HLW disposal R&D. Assessments to date have shown that the host clay layer is a very efficient barrier for the containment of the disposed radionuclides. Due to absence of significant water movement), diffusion - the dominant transport mechanism, combined with generally high retardation of radionuclides, leads to extremely slow radionuclide migration. However, trivalent lanthanides and actinides form easily complexes with the fulvic and humic acids which occur in Boom Clay and in its interstitial water. Colloidal transport may possibly result in enhanced radionuclide mobility, therefore the mechanisms of colloidal transport must be better understood. Numerical modeling of colloidal facilitated radionuclide transport is regarded an important means for evaluating its importance for long-term safety.The paper presents results from modeling experimental data obtained in the framework of the EC TRANCOM-II project, and addresses the migration behavior of relevant radionuclides in a reducing clay environment, with special emphasis on the role of the Natural Organic Matter (NOM) [1]. Percolation type experiments, using stable 14C-labelled NOM, have been interpreted by means of the numerical code HYDRUS-1D [2]. Tracer solution collected at regular intervals was used for inverse modeling with the HYDRUS-1D numerical code to identify the most likely migration processes and the associated parameters. Typical colloid transport submodels tested included kinetically controlled attachment/detachment and kinetically controlled straining and liberation.


2006 ◽  
Vol 31 (10-14) ◽  
pp. 541-547 ◽  
Author(s):  
Norbert Maes ◽  
Lian Wang ◽  
Tim Hicks ◽  
David Bennett ◽  
Peter Warwick ◽  
...  

2010 ◽  
Vol 98 (9-11) ◽  
Author(s):  
E. Martens ◽  
Norbert Maes ◽  
E. Weetjens ◽  
M. Van Gompel ◽  
L. Van Ravestyn

2010 ◽  
Vol 59 (1) ◽  
pp. 99-108 ◽  
Author(s):  
M. Takács ◽  
Gy. Füleky

The Hot Water Percolation (HWP) technique for preparing soil extracts has several advantages: it is easily carried out, fast, and several parameters can be measured from the same solution. The object of this study was to examine the possible use of HWP extracts for the characterization of soil organic matter. The HPLC-SEC chromatograms, UV-VIS and fluorescence properties of the HWP extracts were studied and the results were compared with those of the International Humic Substances Society (IHSS) Soil Humic Acid (HA), IHSS Soil Fulvic Acid (FA) and IHSS Suwannee Natural Organic Matter (NOM) standards as well as their HA counterparts isolated by traditional extraction methods from the original soil samples. The DOM of the HWP solution is probably a mixture of organic materials, which have some characteristics similar to the Soil FA fractions and NOM. The HWP extracted organic material can be studied and characterized using simple techniques, like UV-VIS and fluorescence spectroscopy.


2000 ◽  
Vol 49 (5) ◽  
pp. 269-280 ◽  
Author(s):  
Cheng-Nan Chang ◽  
Ying-Shih Ma ◽  
Guor-Cheng Fang ◽  
Fang-Fong Zing

Sign in / Sign up

Export Citation Format

Share Document