scholarly journals The role, carrier and mission of neural crest cells in the skin

2021 ◽  
Vol 97 (6) ◽  
pp. 326-331
Author(s):  
Imre Schneider ◽  

The neuro crest arising from the ectoderm is a transient structure and disappears as the neurocrest cells leave these places to invade the whole embryo. The epidermis develops from the ectoderm in the fourth embryonal weeks. The embryos consist of cranial-,vagal-, truncal and sacral segments and the neuro crest cells migrate from these places to form various structures, including the peripheral nerve system, the craniofacial bones and cartilages, etc. The neuro crest cells degrade the basal membrane of neural tube and thereafter migrate through the extracellular matrix in ventromedial and dorsolateral direction. Neural crest cells use various cell adhesion molecules and diferent proteaes. The invasive capacity of these cells is infuenced by aquaporin-1 , too. . The sensory nerves developig from the neuro- crest cells can be found in the epidermis and its appendicular organ, the dermal autonomic nerves in the dermis. The epidermal melanocytes develop partly from the neural crest cells, partly from the Schwann cells of the sensory nerves. The cutaneous nerves produce and secrete neuropeptides thus contributing to the development of the skin into a neuroimmuno-endocrin organ.

Development ◽  
2019 ◽  
Vol 147 (1) ◽  
pp. dev185231 ◽  
Author(s):  
Rebecca McLennan ◽  
Mary C. McKinney ◽  
Jessica M. Teddy ◽  
Jason A. Morrison ◽  
Jennifer C. Kasemeier-Kulesa ◽  
...  

1997 ◽  
Vol 3 (S2) ◽  
pp. 177-178
Author(s):  
M. Monteagudo de la Rosa ◽  
M. González-Santander Martínez ◽  
G. Martinez Cuadrado ◽  
R. González Santander

Just after neural fold fusion to form the neural tube, neural crest cells detach from the neural crest, a transient structure located in the dorsal region of the neural tube. Neural crest cells migrate and differentiate into many structures and cells. But the underlying controls of this detachment and initiation of emigration are unknown. Neural crest cells are usually not morphologically distinct from the adjacent neural epithelium (neural tube) and epidermal ectoderm (epiblast) flanking them. We are combining morphological and immunohistochemical approaches to study neural crest cells in their early stage of detachment from the neural crest.Hamburger and Hamilton (1951) stages 9 to 12 White Leghorn chick embryos. Fixation in 2.5% glutaraldehyde - 0.5% tanic acid and postfixation in 1% osmium tetroxide. Embryos contrasted in bloc using uranyl acetate and embedded in araldite. Semithin transversal sections stained with toluidine blue for light microscopy. Ultrathin sections contrasted with lead citrate.


2019 ◽  
Author(s):  
Rebecca McLennan ◽  
Mary C. McKinney ◽  
Jessica M. Teddy ◽  
Jason A. Morrison ◽  
Jennifer C. Kasemeier-Kulesa ◽  
...  

ABSTRACTNeural crest migration requires cells to move through an environment filled with dense extracellular matrix and mesoderm to reach targets throughout the vertebrate embryo. Here, we use high-resolution microscopy, computational modeling, and in vitro and in vivo cell invasion assays to investigate the function of Aquaporin-1 (AQP-1) signaling. We find that migrating lead cranial neural crest cells express AQP-1 mRNA and protein, implicating a biological role for water channel protein function during invasion. Differential AQP-1 levels affect neural crest cell speed, direction, and the length and stability of cell filopodia. Further, AQP-1 enhances matrix metalloprotease (MMP) activity and colocalizes with phosphorylated focal adhesion kinases (pFAK). Co-localization of AQP-1 expression with EphB guidance receptors in the same migrating neural crest cells raises novel implications for the concept of guided bulldozing by lead cells during migration.


2007 ◽  
Vol 27 (1) ◽  
pp. 45-52
Author(s):  
Koh-ichi Atoh ◽  
Manae S. Kurokawa ◽  
Hideshi Yoshikawa ◽  
Chieko Masuda ◽  
Erika Takada ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document