scholarly journals Oscillatory convection of a colloidal suspension in a horizontal cell

2020 ◽  
Vol 13 (3) ◽  
pp. 247-255
Author(s):  
I.N. Cherepanov ◽  
B.L. Smorodin
1989 ◽  
Vol 8 (1) ◽  
pp. 25-28 ◽  
Author(s):  
J.O. Murphy ◽  
J.M. Lopez

AbstractOscillatory convective motions have been observed in the umbrae of sunspots and, in the past, the linear theory of overstability has been used for sunspot models. Here a non-linear model for oscillatory convection has been used to investigate the possibility of a preferred horizontal cell size for these motions, in the presence of a magnetic field.The integration forward in time, from the conductive state, of the non-linear multimode equations governing magnetoconvection when the magnetic Prandtl number is less than one portrays a complex interaction between the evolving magnetic and vertical velocity horizontal scales. Preferred horizontal scales for the convective cells have been established by identifying the modes that substantially contribute to the overall convective heat transport. All other modes, although initially perturbed, in time essentially decay to zero through self interaction.


Author(s):  
S. Shehayeb ◽  
X. Deschanels ◽  
L. Ghannam ◽  
I. Karamé ◽  
G. Toquer
Keyword(s):  

1975 ◽  
Vol 66 (5) ◽  
pp. 617-648 ◽  
Author(s):  
J Kleinschmidt ◽  
J E Dowling

Intracellular recordings were obtained from rods in the Gekko gekko retina and the adaptation characteristics of their responses studied during light and dark adaptation. Steady background illumination induced graded and sustained hyperpolarizing potentials and compressed the incremental voltage range of the receptor. Steady backgrounds also shifted the receptor's voltage-intensity curve along the intensity axis, and bright backgrounds lowered the saturation potential of the receptor. Increment thresholds of single receptors followed Weber's law over a range of about 3.5 log units and then saturated. Most of the receptor sensitivity change in light derived from the shift of the voltage-intensity curve, only little from the voltage compression. Treatment of the eyecup with sodium aspartate at concentrations sufficient to eliminate the beta-wave of the electroretinogram (ERG) abolished initial transients in the receptor response, possibly indicating the removal of horizontal cell feedback. Aspartate treatment, however, did not significantly alter the adaptation characteristics of receptor responses, indicating that they derive from processes intrinsic to the receptors. Dark adaptation after a strongly adapting stimulus was similarly associated with temporary elevation of membrane potential, initial lowering of the saturation potential, and shift of the voltage-intensity curve. Under all conditions of adaptation studied, small amplitude responses were linear with light intensity. Further, there was no unique relation between sensitivity and membrane potential suggesting that receptor sensitivity is controlled at least in part by a step of visual transduction preceding the generation of membrane voltage change.


Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 221
Author(s):  
Argelia Balbuena Balbuena Ortega ◽  
Felix E. Torres-González ◽  
Valentin López López Gayou ◽  
Raul Delgado Delgado Macuil ◽  
Gaetano Assanto ◽  
...  

We carry out an experimental campaign to investigate the nonlinear self-defocusing propagation of singular light beams with various complex structures of phase and intensity in a colloidal suspension of gold nanoparticles with a plasmonic resonance near the laser wavelength (532nm). Studying optical vortices embedded in Gaussian beams, Bessel vortices and Bessel-cosine (necklace) beams, we gather evidence that while intense vortices turn into two-dimensional dark solitons, all structured wavepackets are able to guide a weak Gaussian probe of different wavelength (632.8 nm) along the dark core. The probe confinement also depends on the topological charge of the singular pump.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1291
Author(s):  
Abram I. Livashvili ◽  
Victor V. Krishtop ◽  
Polina V. Vinogradova ◽  
Yuriy M. Karpets ◽  
Vyacheslav G. Efremenko ◽  
...  

In this study, the nonlinear dynamics of nanoparticle concentration in a colloidal suspension (nanofluid) were theoretically studied under the action of a light field with constant intensity by considering concentration convection. The heat and nanoparticle transfer processes that occur in this case are associated with the phenomenon of thermal diffusion, which is considered to be positive in our work. Two exact analytical solutions of a nonlinear Burgers-Huxley-type equation were derived and investigated, one of which was presented in the form of a solitary concentration wave. These solutions were derived considering the dependence of the coefficients of thermal conductivity, viscosity, and absorption of radiation on the nanoparticle concentration in the nanofluid. Furthermore, an expression was obtained for the solitary wave velocity, which depends on the absorption coefficient and intensity of the light wave. Numerical estimates of the concentration wave velocity for a specific nanofluid—water/silver—are given. The results of this study can be useful in the creation of next-generation solar collectors.


Sign in / Sign up

Export Citation Format

Share Document