colloidal suspension
Recently Published Documents


TOTAL DOCUMENTS

663
(FIVE YEARS 139)

H-INDEX

46
(FIVE YEARS 6)

Author(s):  
Gayathri Devi Pilli ◽  
Karthikeyan Elumalai ◽  
Vijey Aanandhi Muthukumar ◽  
Palani Shanmuga Sundaram

Abstract Background This is an objective critique to give an in-depth description of Nano suspensions. This article is attempting to address the issue of whether or not Nano science is realistic with respect to price, with regards to item costs being added to the endeavor and Lipotropic drugs have proven to be rewarding and Lipo-immunotherapy has proven to be beneficial. In modern times, drug marketing and promotion have become crucial to efficient commercializing of successful molecules, pharmaceutical companies often work to increase the chances of promoting successful drugs, these included cardiovascular drugs because of their widespread usage. Main body Nano suspension is a Nano metric Colloidal Suspension system i.e., Nano suspensions, in the solid form reaches the bloodstream and Nanoparticle colloids readily available to the target cells. All research on Nanostructures is focused on the four primary dimensions, composition, homogeneity, heterogeneity, elasticity, and agglomeration. Researchers are devising ways to deliver medication and other substances to a damaged cell and diseased region, as well as diagnose the body to pinpoint disease and defects, by way of Nanotechnology. Short conclusions The vital analysis of Nano science experiment on Nano suspension is working to achieve the goal of reducing product cost by using Nanotechnology in product development, as it wants to examine the probability of development by utilizing Nanotechnology. The usage of the top-limited technology allows the development of cardiovascular drugs classified under the biopharmaceutical classification system (Class II and Class IV) to use two approaches namely top-down and bottom-up methods.


Author(s):  
Екатерина Анатольевна Богданова ◽  
Владимир Михайлович Скачков

Порошки наноразмерных гидроксиапатита и фторапатита синтезированы методом осаждения из растворов. В качестве связующего вещества использован пищевой желатин. Такая композиция имеет высокую адгезию на материалах различной природы и пористости. Получены также пористые пленки и гранулы с развитой удельной поверхностью. Рассмотрены их микроструктуры. Изучена возможность использования коллоидной суспензии и водной суспензии кристаллического апатита в сочетании с раствором желатина в качестве биоактивного материала, как для создания покрытий, так и получения гранул. Установлено, что использование порошка апатита совместно с желатином позволяет существенно сократить сроки формирования биоактивного покрытия и значительно повысить его адгезионную прочность. Сопоставлены получаемые гранулы апатита по размерам в зависимости от концентрации желатина в водном растворе. На разработанные биоактивные покрытия и гранулированный материал на основе наноразмерного апатита со связующим агентом поданы заявки на патент. Nanoscale hydroxyapatite and fluorapatite powders were synthesized by precipitation from solutions. Food gelatin is used as a binder. This composition has a high adhesion on materials of different nature and porosity. Porous films and granules with a developed specific surface area were also obtained. Their microstructures are considered. The possibility of using a colloidal suspension and an aqueous suspension of crystalline apatite in combination with a gelatin solution as a bioactive material, both for creating coatings and obtaining granules, has been studied. It is established that the use of apatite powder together with gelatin can significantly reduce the time of formation of a bioactive coating and significantly increase its adhesive strength. The obtained apatite granules are compared in size depending on the concentration of gelatin in an aqueous solution. Patent applications have been filed for the developed bioactive coatings and granular material based on nanoscale apatite with a binding agent.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3437
Author(s):  
Frederico Duarte ◽  
Cristián Cuerva ◽  
Carlos Fernández-Lodeiro ◽  
Javier Fernández-Lodeiro ◽  
Raquel Jiménez ◽  
...  

Polymer nanoparticles doped with fluorescent molecules are widely applied for biological assays, local temperature measurements, and other bioimaging applications, overcoming several critical drawbacks, such as dye toxicity, increased water solubility, and allowing imaging of dyes/drug delivery in water. In this work, some polymethylmethacrylate (PMMA), polyvinylpyrrolidone (PVP) and poly(styrene-butadiene-styrene) (SBS) based micro and nanoparticles with an average size of about 200 nm and encapsulating B(III) compounds have been prepared via the reprecipitation method by using tetrahydrofuran as the oil phase and water. The compounds are highly hydrophobic, but their encapsulation into a polymer matrix allows obtaining stable colloidal dispersions in water (3.39 µM) that maintain the photophysical behavior of these dyes. Although thermally activated non-radiative processes occur by increasing temperature from 25 to 80 °C, the colloidal suspension of the B(III) particles continues to emit greenish light (λ = 509 nm) at high temperatures. When samples are cooling back to room temperature, the emission is restored, being reversible. A probe of concept drug delivery study was conducted using coumarin 6 as a prototype of a hydrophobic drug.


2021 ◽  
Author(s):  
T. Lahiri ◽  
S. K. Pushkar ◽  
P. Poddar

Abstract Freedericksz effect is investigated theoretically for a ferronematic liquid crystal, which is a colloidal suspension of ferromagnetic nanoparticles in a nematic fluid. Considering a splay type Freedericksz geometry, weak anchoring conditions are assumed at the cell boundaries. The specific nature of this anchoring reveals a rich variety of stable ferronematic phases, which include uniform, distorted and saturated states. Apart from weak anchoring conditions at the cell boundaries, soft planar anchoring is assumed for the mesogenic molecules at the surface of a nanoparticle. The interplay between these two anchoring phenomena along with Frank type elastic theory determine the values of Freedericksz threshold between various ferronematic states. It is found that compared to relatively strong anchoring for the mesogens both at the cell boundaries and at the surface of the nanoparticles, weak anchoring significantly reduces the Freedericksz threshold field. Landau theory is then utilized to understand the nature of transition between different ferronematic states. Based on the phenomenon of segregation effect, these transitions are found to be either first order or second order in nature. The present theory is also extended to non-ferromagnetic nanoparticles and significant reduction in Freedericksz threshold is obtained. Finally, these results are corroborated with experimental findings.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3232
Author(s):  
Hossam A. Nabwey ◽  
Ahmed M. Rashad ◽  
Waqar A. Khan

In the previous decennium, considerable applications ofnanoparticles have been developed in the area of science. Nanoparticles with micropolar fluid suspended in conventional fluids can increase the heat transfer. Micropolar fluids have attracted much research attention because of their use in industrial processes. Exotic lubricants, liquid crystal solidification, cooling of a metallic plate in a bath, extrusion of metals and polymers, drawing of plastic films, manufacturing of glass and paper sheets, and colloidal suspension solutions are just a few examples. The primary goal of this studywas to see how radiation and velocity slip affect the mixed convection of sodium alginate nanofluid flow over a non-isothermal wedge in a saturated porous media.In this communication, theTiwari and Das model was employed to investigate the micropolarnanofluid flow via mixed convection over aradiated wedge in a saturated porous medium with the velocity slip condition. Nanoparticles of silver (Ag) wreused in asodium alginate base fluid. The intended system of governing equations is converted to a set of ordinary differential equations and then solved applying the finite difference method. Variousfluid flows, temperatures, and physical quantities of interest were examined. The effects of radiation on the skin friction are negligible in the case of forced and mixed convection, whereas radiation increases the skin friction in free convection. It is demonstrated that the pressure gradient, solid volume fraction, radiation, and slip parameters enhance the Nusselt number, whereas the micropolar parameter reduces the Nusselt number.


2021 ◽  
Vol 0 (4) ◽  
pp. 16-21
Author(s):  
B.M. GAREEV ◽  
◽  
A.M. ABDRAKHMANOV ◽  
G.L. SHARIPOV ◽  
◽  
...  

The article is devoted to an example of the sonoluminescence spectroscopy use, which was previously known as a method for analyzing substances from the characteristic spectra of their sonoluminescence only in true solutions, for carrying out a similar analysis of substances contained in insoluble nanoparticles in colloidal suspensions. The solutions sonolysis, that is, their irradiation with ultrasound, is accompanied by the formation of cavitation bubbles that vibrate radially at the frequency of the ultrasonic field. Volatile components of the solution enter the bubbles, evaporating from the liquid-gas interface; nonvolatile components can penetrate into the bubble as a result of the injection of solution nanodroplets into the gas phase, which occurs during intense bubble movements accompanied by their deformation. In a nonequilibrium plasma periodically forming in cavitation bubbles, destruction occurs, as well as collisional excitation of these components, followed by luminescence. It has been shown that this mechanism of sonoluminescence also operates in colloidal suspensions, where substances are present in the form of nanoparticles with sizes less than 50 nm. Such nanoparticles penetrate into moving cavitation bubbles, without destroying them, as part of nanodroplets, and then undergo decomposition in bubble plasma with the excited particles generation as emitters of characteristic sonoluminescence. In this work, we synthesized colloidal suspensions in dodecane of porous SiO2 nanoparticles containing adsorbed Ru(bpy)3Cl2 and CuSO4 salts. During moving single-bubble sonolysis for these suspensions, characteristic emission spectra of Ru and Cu atoms, SiO molecules, and Ru(bpy)3 ions suitable for sonoluminescence spectroscopic analysis were recorded. By comparing the experimental and calculated (at different temperatures) luminescence spectra of Ru atoms, we estimated the electron temperature attained upon acoustic compression of single bubble in colloidal suspension in dodecane: Te = 7000 K.


2021 ◽  
Vol 945 (1) ◽  
pp. 012058
Author(s):  
Sayshar Ram Nair ◽  
Cheen Sean Oon ◽  
Ming Kwang Tan ◽  
S.N. Kazi

Abstract Heat exchangers are important equipment with various industrial applications such as power plants, HVAC industry and chemical industries. Various fluids that are used as working fluid in the heat exchangers such as water, oil, and ethylene glycol. Researchers have conducted various studies and investigations to improve the heat exchanger be it from material or heat transfer point of view. There have been attempts to create mixtures with solid particles suspended. This invention had some drawbacks since the pressure drop was compromised, on top of the occurrence of sedimentation or even erosion, which incurs higher maintenance costs. A new class of colloidal suspension fluid that met the demands and characteristics of a heat exchanger was then created. This novel colloidal suspension mixture was then and now addressed as “nanofluid”. In this study, the usage of functionalized graphene nanoplatelet (GNP) nanofluids will be studied for its thermal conductivity within an annular conduit with angled fins, which encourage swirling flows. The simulation results for the chosen GNP nanofluid concentrations have shown an enhancement in thermal conductivity and heat transfer coefficient compared to the corresponding base fluid thermal properties. The data from this research is useful in industrial applications which involve heat exchangers with finned tubes.


2021 ◽  
Vol 945 (1) ◽  
pp. 012056
Author(s):  
Yanru Wang ◽  
Cheen Sean Oon ◽  
Manh-Vu Tran ◽  
Joshua Yap Kee An

Abstract Heat exchangers have been widely used in various engineering applications. It is important to develop a highly efficient heat transfer equipment to reduce carbon footprint. In the current research, the effect of 0.025wt% CGNP/water nanofluid on convective heat transfer and pressure drop performance is investigated numerically in finned conduits with circular and square geometry. ANSYS FLUENT is used to analyze the turbulent flow inside the conduits with Reynolds number ranging from 7360 to 28011 and constant heat flux 12254.90W/m2 and 9615.38W/m2 in circular and square geometry, respectively. Only 1/8 of the pipe was constructed in the simulation as the geometry is symmetrical. The numbers of mesh elements are 465488 and 469144 for circular and square conduits. SST k-omega viscous model, SIMPLEC scheme and second-order upwind solvers are used in this model, where SST k-omega viscous model is good at solving turbulence parameters in the near wall boundary regions. It is found that the use of CGNP/water nanofluid can increase convective heat transfer coefficient without increasing pressure drop compared with water. Besides, the circular pipe shows higher heat transfer enhancement compared with square pipe. Furthermore, the increase in Reynolds number enhances the Nusselt number and heat transfer coefficient in both circular and square geometries. It is recommended that circular finned pipe and CGNP/water colloidal suspension could be applied in low turbulence flow setting heat exchanger.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Luca Tomarchio ◽  
Salvatore Macis ◽  
Annalisa D’Arco ◽  
Sen Mou ◽  
Antonio Grilli ◽  
...  

AbstractThe diffusion of light by random materials is a general phenomenon that appears in many different systems, spanning from colloidal suspension in liquid crystals to disordered metal sponges and paper composed of random fibers. Random scattering is also a key element behind mimicry of several animals, such as white beetles and chameleons. Here, random scattering is related to micro and nanosized spatial structures affecting a broad electromagnetic region. In this work, we have investigated how random scattering modulates the optical properties, from terahertz to ultraviolet light, of a novel functional material, i.e., a three-dimensional graphene (3D Graphene) network based on interconnected high-quality two-dimensional graphene layers. Here, random scattering generates a high-frequency pass-filter behavior. The optical properties of these graphene structures bridge the nanoworld into the macroscopic world, paving the way for their use in novel optoelectronic devices.


Sign in / Sign up

Export Citation Format

Share Document