scholarly journals Reduced cosserat continuum as a possible model for granular medium

Author(s):  
Vladimir Lalin ◽  
Elizaveta Zdanchuk
2015 ◽  
Vol 725-726 ◽  
pp. 863-868
Author(s):  
Vladimir Lalin ◽  
Elizaveta Zdanchuk

In this work we consider a mathematical model for granular medium. Here we claim that Reduced Cosserat continuum is a suitable model to describe granular materials. Reduced Cosserat Continuum is an elastic medium, where all translations and rotations are independent. Moreover a force stress tensor is asymmetric and a couple stress tensor is equal to zero. Here we establish the variational (weak) form of an initial boundary-value problem for the reduced Cosserat continuum. We calculate the variation of corresponding Hamiltonian to obtain motion differential equation.


2012 ◽  
Vol 31 (5) ◽  
pp. 65-71 ◽  
Author(s):  
V.V. Lalin ◽  
Ye.V. Zdanchuk

2000 ◽  
Vol 627 ◽  
Author(s):  
Prabhu R. Nott ◽  
K. Kesava Rao ◽  
L. Srinivasa Mohan

ABSTRACTThe slow flow of granular materials is often marked by the existence of narrow shear layers, adjacent to large regions that suffer little or no deformation. This behaviour, in the regime where shear stress is generated primarily by the frictional interactions between grains, has so far eluded theoretical description. In this paper, we present a rigid-plastic frictional Cosserat model that captures thin shear layers by incorporating a microscopic length scale. We treat the granular medium as a Cosserat continuum, which allows the existence of localised couple stresses and, therefore, the possibility of an asymmetric stress tensor. In addition, the local rotation is an independent field variable and is not necessarily equal to the vorticity. The angular momentum balance, which is implicitly satisfied for a classical continuum, must now be solved in conjunction with the linear momentum balances. We extend the critical state model, used in soil plasticity, for a Cosserat continuum and obtain predictions for flow in plane and cylindrical Couette devices. The velocity profile predicted by our model is in qualitative agreement with available experimental data. In addition, our model can predict scaling laws for the shear layer thickness as a function of the Couette gap, which must be verified in future experiments. Most significantly, our model can determine the velocity field in viscometric flows, which classical plasticity-based model cannot.


2017 ◽  
Vol 2 (3) ◽  
Author(s):  
Florian Brunier-Coulin ◽  
Pablo Cuéllar ◽  
Pierre Philippe
Keyword(s):  

2021 ◽  
Vol 7 (7) ◽  
pp. eabd2711
Author(s):  
Jean-François Louf ◽  
Nancy B. Lu ◽  
Margaret G. O’Connell ◽  
H. Jeremy Cho ◽  
Sujit S. Datta

Hydrogels hold promise in agriculture as reservoirs of water in dry soil, potentially alleviating the burden of irrigation. However, confinement in soil can markedly reduce the ability of hydrogels to absorb water and swell, limiting their widespread adoption. Unfortunately, the underlying reason remains unknown. By directly visualizing the swelling of hydrogels confined in three-dimensional granular media, we demonstrate that the extent of hydrogel swelling is determined by the competition between the force exerted by the hydrogel due to osmotic swelling and the confining force transmitted by the surrounding grains. Furthermore, the medium can itself be restructured by hydrogel swelling, as set by the balance between the osmotic swelling force, the confining force, and intergrain friction. Together, our results provide quantitative principles to predict how hydrogels behave in confinement, potentially improving their use in agriculture as well as informing other applications such as oil recovery, construction, mechanobiology, and filtration.


2021 ◽  
Vol 126 ◽  
pp. 136-150
Author(s):  
Kai Chen ◽  
Degao Zou ◽  
Hongxiang Tang ◽  
Jingmao Liu ◽  
Yue Zhuo
Keyword(s):  

1993 ◽  
Vol 162 (3) ◽  
pp. 529-535 ◽  
Author(s):  
D. Wu ◽  
Z.W. Qian ◽  
D. Shao

2002 ◽  
Vol 457 ◽  
pp. 377-409 ◽  
Author(s):  
L. SRINIVASA MOHAN ◽  
K. KESAVA RAO ◽  
PRABHU R. NOTT

A rigid-plastic Cosserat model for slow frictional flow of granular materials, proposed by us in an earlier paper, has been used to analyse plane and cylindrical Couette flow. In this model, the hydrodynamic fields of a classical continuum are supplemented by the couple stress and the intrinsic angular velocity fields. The balance of angular momentum, which is satisfied implicitly in a classical continuum, must be enforced in a Cosserat continuum. As a result, the stress tensor could be asymmetric, and the angular velocity of a material point may differ from half the local vorticity. An important consequence of treating the granular medium as a Cosserat continuum is that it incorporates a material length scale in the model, which is absent in frictional models based on a classical continuum. Further, the Cosserat model allows determination of the velocity fields uniquely in viscometric flows, in contrast to classical frictional models. Experiments on viscometric flows of dense, slowly deforming granular materials indicate that shear is confined to a narrow region, usually a few grain diameters thick, while the remaining material is largely undeformed. This feature is captured by the present model, and the velocity profile predicted for cylindrical Couette flow is in good agreement with reported data. When the walls of the Couette cell are smoother than the granular material, the model predicts that the shear layer thickness is independent of the Couette gap H when the latter is large compared to the grain diameter dp. When the walls are of the same roughness as the granular material, the model predicts that the shear layer thickness varies as (H/dp)1/3 (in the limit H/dp [Gt ] 1) for plane shear under gravity and cylindrical Couette flow.


Sign in / Sign up

Export Citation Format

Share Document