scholarly journals Peer Review #2 of "Changes in sprint performance and sagittal plane kinematics after heavy resisted sprint training in professional soccer players (v0.1)"

Author(s):  
S McErlain-Naylor
PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10507
Author(s):  
Johan Lahti ◽  
Toni Huuhka ◽  
Valentin Romero ◽  
Ian Bezodis ◽  
Jean-Benoit Morin ◽  
...  

Background Sprint performance is an essential skill to target within soccer, which can be likely achieved with a variety of methods, including different on-field training options. One such method could be heavy resisted sprint training. However, the effects of such overload on sprint performance and the related kinetic changes are unknown in a professional setting. Another unknown factor is whether violating kinematic specificity via heavy resistance will lead to changes in unloaded sprinting kinematics. We investigated whether heavy resisted sled training (HS) affects sprint performance, kinetics, sagittal plane kinematics, and spatiotemporal parameters in professional male soccer players. Methods After familiarization, a nine-week training protocol and a two-week taper was completed with sprint performance and force-velocity (FV) profiles compared before and after. Out of the two recruited homogenous soccer teams (N = 32, age: 24.1 ± 5.1 years: height: 180 ± 10 cm; body-mass: 76.7 ± 7.7 kg, 30-m split-time: 4.63 ± 0.13 s), one was used as a control group continuing training as normal with no systematic acceleration training (CON, N = 13), while the intervention team was matched into two HS subgroups based on their sprint performance. Subgroup one trained with a resistance that induced a 60% velocity decrement from maximal velocity (N = 10, HS60%) and subgroup two used a 50% velocity decrement resistance (N = 9, HS50%) based on individual load-velocity profiles. Results Both heavy resistance subgroups improved significantly all 10–30-m split times (p < 0.05, d =  − 1.25; −0.62). Post-hoc analysis showed that HS50% improved significantly more compared to CON in 0–10-m split-time (d = 1.03) and peak power (d = 1.16). Initial maximal theoretical horizontal force capacity (F0) and sprint FV-sprint profile properties showed a significant moderate relationship with F0 adaptation potential (p < 0.05). No significant differences in sprinting kinematics or spatiotemporal variables were observed that remained under the between-session minimal detectable change. Conclusion With appropriate coaching, heavy resisted sprint training could be one pragmatic option to assist improvements in sprint performance without adverse changes in sprinting kinematics in professional soccer players. Assessing each player’s initial individual sprint FV-profile may assist in predicting adaptation potential. More studies are needed that compare heavy resisted sprinting in randomized conditions.


2019 ◽  
Author(s):  
Johan Lahti ◽  
Toni Huuhka ◽  
Valentin Romero ◽  
Ian N. Bezodis ◽  
Jean-Benoit Morin ◽  
...  

Sprint performance is an essential skill to target within soccer. However, time-consuming intervention models could be easily rejected by coaches. Therefore, alternative and efficient field training options are warranted. One such method could be heavy resisted sprint training. However, it is unknown whether such overload will be efficient in assisting increases in sprint performance in a professional setting, and whether violating kinematic specificity via heavy loading will lead to changes in unloaded sprinting kinematics. Thus, we investigated whether heavy resisted training affects sprint performance and sagittal plane kinematics. Training-induced changes in sprint FV-profiles were computed before and after the 9-week, 2 sessions x week protocol. Out of the two recruited teams (N = 32, age: 24.1 ± 5.0 years: height: 180 ± 10 cm; body-mass: 76.7 ± 7.7 kg), one was used as a control group continuing training as normal (CON, N = 13), while the experimental team was divided into two subgroups based on their initial sprint performance: 1) Heavy sled training with the 60% velocity drop (N = 10) and 2) 50% velocity drop load (N = 9). Both experimental groups improved significantly all 0-30-m split times (p &lt; 0.05, d = -0.62 – -1.25), with post-hoc showing HS50% improving significantly compared to CON in 0-10-m split (d = 1.03) and Pmax (d = 1.16). No differences in sprinting kinematics were observed. With appropriate coaching, heavy sled training could be a pragmatic option to assist improvements in sprint performance without adverse changes in sprinting kinematics in professional soccer players.


2019 ◽  
Vol 14 (8) ◽  
pp. 1066-1073 ◽  
Author(s):  
Brian J. McMorrow ◽  
Massimiliano Ditroilo ◽  
Brendan Egan

Purpose: Resisted sled sprinting (RSS) is an effective tool for improving sprint performance over short distances, but the effect on change-of-direction (COD) performance is largely unknown. The present study investigated the effect of heavy RSS training during the competitive season on sprint and COD performance in professional soccer players. Methods: Over 6 wk in-season, an RSS training group (n = 6) performed RSS at a sled load of 30% body mass for a total program running distance of 800 m, whereas an unresisted sprint (URS) training group (n = 7) performed the same distance of unresisted sprinting. A 20-m maximal sprint with split times measured at 5, 10, and 20 m and the sprint 9-3-6-3-9 m with 180° turns COD test were performed before and after the intervention. Results: Sprint performance (mean, 95% confidence limits, qualitative inference) was improved in both groups over 5 m (URS, 5.1%, −2.4 to 12.7, likely moderate; RSS, 5.4%, 0.5–10.4, likely moderate), 10 m (URS, 3.9%, −0.3 to 8.1, very likely moderate; RSS, 5.0%, 1.8–8.0, very likely large), and 20 m (URS, 2.0%, −0.6 to 4.5, likely moderate; RSS, 3.0%, 1.7–4.4, very likely moderate). COD was improved in both groups (URS, 3.7%, 2.2–5.2, most likely large; RSS, 3.3%, 1.6–5.0, most likely moderate). Between-groups differences were unclear. Conclusion: Heavy RSS and URS training matched for running distance were similarly effective at improving sprint and COD performance in professional soccer players when performed in the competitive phase of the season.


2017 ◽  
Vol 13 (1) ◽  
pp. 45-57
Author(s):  
Leonidas Papadakis ◽  
◽  
Michalis Mitrotasios ◽  
Konstantinos Patras ◽  
◽  
...  

2018 ◽  
Vol 36 (17) ◽  
pp. 1923-1929 ◽  
Author(s):  
Saulo Gil ◽  
Renato Barroso ◽  
Everton Crivoi do Carmo ◽  
Irineu Loturco ◽  
Ronaldo Kobal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document