scholarly journals Changes in sprint performance and sagittal plane kinematics after heavy resisted sprint training in professional soccer players

2019 ◽  
Author(s):  
Johan Lahti ◽  
Toni Huuhka ◽  
Valentin Romero ◽  
Ian N. Bezodis ◽  
Jean-Benoit Morin ◽  
...  

Sprint performance is an essential skill to target within soccer. However, time-consuming intervention models could be easily rejected by coaches. Therefore, alternative and efficient field training options are warranted. One such method could be heavy resisted sprint training. However, it is unknown whether such overload will be efficient in assisting increases in sprint performance in a professional setting, and whether violating kinematic specificity via heavy loading will lead to changes in unloaded sprinting kinematics. Thus, we investigated whether heavy resisted training affects sprint performance and sagittal plane kinematics. Training-induced changes in sprint FV-profiles were computed before and after the 9-week, 2 sessions x week protocol. Out of the two recruited teams (N = 32, age: 24.1 ± 5.0 years: height: 180 ± 10 cm; body-mass: 76.7 ± 7.7 kg), one was used as a control group continuing training as normal (CON, N = 13), while the experimental team was divided into two subgroups based on their initial sprint performance: 1) Heavy sled training with the 60% velocity drop (N = 10) and 2) 50% velocity drop load (N = 9). Both experimental groups improved significantly all 0-30-m split times (p < 0.05, d = -0.62 – -1.25), with post-hoc showing HS50% improving significantly compared to CON in 0-10-m split (d = 1.03) and Pmax (d = 1.16). No differences in sprinting kinematics were observed. With appropriate coaching, heavy sled training could be a pragmatic option to assist improvements in sprint performance without adverse changes in sprinting kinematics in professional soccer players.

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10507
Author(s):  
Johan Lahti ◽  
Toni Huuhka ◽  
Valentin Romero ◽  
Ian Bezodis ◽  
Jean-Benoit Morin ◽  
...  

Background Sprint performance is an essential skill to target within soccer, which can be likely achieved with a variety of methods, including different on-field training options. One such method could be heavy resisted sprint training. However, the effects of such overload on sprint performance and the related kinetic changes are unknown in a professional setting. Another unknown factor is whether violating kinematic specificity via heavy resistance will lead to changes in unloaded sprinting kinematics. We investigated whether heavy resisted sled training (HS) affects sprint performance, kinetics, sagittal plane kinematics, and spatiotemporal parameters in professional male soccer players. Methods After familiarization, a nine-week training protocol and a two-week taper was completed with sprint performance and force-velocity (FV) profiles compared before and after. Out of the two recruited homogenous soccer teams (N = 32, age: 24.1 ± 5.1 years: height: 180 ± 10 cm; body-mass: 76.7 ± 7.7 kg, 30-m split-time: 4.63 ± 0.13 s), one was used as a control group continuing training as normal with no systematic acceleration training (CON, N = 13), while the intervention team was matched into two HS subgroups based on their sprint performance. Subgroup one trained with a resistance that induced a 60% velocity decrement from maximal velocity (N = 10, HS60%) and subgroup two used a 50% velocity decrement resistance (N = 9, HS50%) based on individual load-velocity profiles. Results Both heavy resistance subgroups improved significantly all 10–30-m split times (p < 0.05, d =  − 1.25; −0.62). Post-hoc analysis showed that HS50% improved significantly more compared to CON in 0–10-m split-time (d = 1.03) and peak power (d = 1.16). Initial maximal theoretical horizontal force capacity (F0) and sprint FV-sprint profile properties showed a significant moderate relationship with F0 adaptation potential (p < 0.05). No significant differences in sprinting kinematics or spatiotemporal variables were observed that remained under the between-session minimal detectable change. Conclusion With appropriate coaching, heavy resisted sprint training could be one pragmatic option to assist improvements in sprint performance without adverse changes in sprinting kinematics in professional soccer players. Assessing each player’s initial individual sprint FV-profile may assist in predicting adaptation potential. More studies are needed that compare heavy resisted sprinting in randomized conditions.


2019 ◽  
Vol 14 (8) ◽  
pp. 1066-1073 ◽  
Author(s):  
Brian J. McMorrow ◽  
Massimiliano Ditroilo ◽  
Brendan Egan

Purpose: Resisted sled sprinting (RSS) is an effective tool for improving sprint performance over short distances, but the effect on change-of-direction (COD) performance is largely unknown. The present study investigated the effect of heavy RSS training during the competitive season on sprint and COD performance in professional soccer players. Methods: Over 6 wk in-season, an RSS training group (n = 6) performed RSS at a sled load of 30% body mass for a total program running distance of 800 m, whereas an unresisted sprint (URS) training group (n = 7) performed the same distance of unresisted sprinting. A 20-m maximal sprint with split times measured at 5, 10, and 20 m and the sprint 9-3-6-3-9 m with 180° turns COD test were performed before and after the intervention. Results: Sprint performance (mean, 95% confidence limits, qualitative inference) was improved in both groups over 5 m (URS, 5.1%, −2.4 to 12.7, likely moderate; RSS, 5.4%, 0.5–10.4, likely moderate), 10 m (URS, 3.9%, −0.3 to 8.1, very likely moderate; RSS, 5.0%, 1.8–8.0, very likely large), and 20 m (URS, 2.0%, −0.6 to 4.5, likely moderate; RSS, 3.0%, 1.7–4.4, very likely moderate). COD was improved in both groups (URS, 3.7%, 2.2–5.2, most likely large; RSS, 3.3%, 1.6–5.0, most likely moderate). Between-groups differences were unclear. Conclusion: Heavy RSS and URS training matched for running distance were similarly effective at improving sprint and COD performance in professional soccer players when performed in the competitive phase of the season.


Author(s):  
Mikael Derakhti ◽  
Domen Bremec ◽  
Tim Kambič ◽  
Lasse Ten Siethoff ◽  
Niklas Psilander

Purpose: This study compared the effects of heavy resisted sprint training (RST) versus unresisted sprint training (UST) on sprint performance among adolescent soccer players. Methods: Twenty-four male soccer players (age: 15.7 [0.5] y; body height: 175.7 [9.4] cm; body mass: 62.5 [9.2] kg) were randomly assigned to the RST group (n = 8), the UST group (n = 10), or the control group (n = 6). The UST group performed 8 × 20 m unresisted sprints twice weekly for 4 weeks, whereas the RST group performed 5 × 20-m heavy resisted sprints with a resistance set to maximize the horizontal power output. The control group performed only ordinary soccer training and match play. Magnitude-based decision and linear regression were used to analyze the data. Results: The RST group improved sprint performances with moderate to large effect sizes (0.76–1.41) across all distances, both within and between groups (>92% beneficial effect likelihood). Conversely, there were no clear improvements in the UST and control groups. The RST evoked the largest improvements over short distances (6%–8%) and was strongly associated with increased maximum horizontal force capacities (r = .9). Players with a preintervention deficit in force capacity appeared to benefit the most from RST. Conclusions: Four weeks of heavy RST led to superior improvements in short-sprint performance compared with UST among adolescent soccer players. Heavy RST, using a load individually selected to maximize horizontal power, is therefore highly recommended as a method to improve sprint acceleration in youth athletes.


2017 ◽  
Vol 12 (6) ◽  
pp. 840-844 ◽  
Author(s):  
Jean-Benoît Morin ◽  
George Petrakos ◽  
Pedro Jiménez-Reyes ◽  
Scott R. Brown ◽  
Pierre Samozino ◽  
...  

Background:Sprint running acceleration is a key feature of physical performance in team sports, and recent literature shows that the ability to generate large magnitudes of horizontal ground-reaction force and mechanical effectiveness of force application are paramount. The authors tested the hypothesis that very-heavy loaded sled sprint training would induce an improvement in horizontal-force production, via an increased effectiveness of application.Methods:Training-induced changes in sprint performance and mechanical outputs were computed using a field method based on velocity–time data, before and after an 8-wk protocol (16 sessions of 10- × 20-m sprints). Sixteen male amateur soccer players were assigned to either a very-heavy sled (80% body mass sled load) or a control group (unresisted sprints).Results:The main outcome of this pilot study is that very-heavy sled-resisted sprint training, using much greater loads than traditionally recommended, clearly increased maximal horizontal-force production compared with standard unloaded sprint training (effect size of 0.80 vs 0.20 for controls, unclear between-groups difference) and mechanical effectiveness (ie, more horizontally applied force; effect size of 0.95 vs –0.11, moderate between-groups difference). In addition, 5-m and 20-m sprint performance improvements were moderate and small for the very-heavy sled group and small and trivial for the control group, respectively.Practical Applications:This brief report highlights the usefulness of very-heavy sled (80% body mass) training, which may suggest value for practical improvement of mechanical effectiveness and maximal horizontal-force capabilities in soccer players and other team-sport athletes.Results:This study may encourage further research to confirm the usefulness of very-heavy sled in this context.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ádám László Nagy ◽  
Zsolt Tóth ◽  
Tamás Tarjányi ◽  
Nándor Tamás Práger ◽  
Zoltán Lajos Baráth

Abstract Background In this research the biomechanical properties of a bone model was examined. Porcine ribs are used as experimental model. The objective of this research was to investigate and compare the biomechanical properties of the bone model before and after implant placement. Methods The bone samples were divided in three groups, Group 1 where ALL-ON-FOUR protocol was used during pre-drilling and placing the implants, Group 2 where ALL-ON-FOUR protocol was used during pre-drilling, and implants were not placed, and Group 3 consisting of intact bones served as a control group. Static and dynamic loading was applied for examining the model samples. Kruskal–Wallis statistical test and as a post-hoc test Mann–Whitney U test was performed to analyze experimental results. Results According to the results of the static loading, there was no significant difference between the implanted and original ribs, however, the toughness values of the bones decreased largely on account of predrilling the bones. The analysis of dynamic fatigue measurements by Kruskal–Wallis test showed significant differences between the intact and predrilled bones. Conclusion The pre-drilled bone was much weaker in both static and dynamic tests than the natural or implanted specimens. According to the results of the dynamic tests and after a certain loading cycle the implanted samples behaved the same way as the control samples, which suggests that implantation have stabilized the skeletal bone structure.


Sign in / Sign up

Export Citation Format

Share Document