scholarly journals Peer Review #1 of "Morphometric relationships and seasonal variation in size, weight, and a condition index of post-settlement stages of the Caribbean spiny lobster (v0.2)"

Author(s):  
J Groeneveld
PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5297 ◽  
Author(s):  
Rogelio Martínez-Calderón ◽  
Enrique Lozano-Álvarez ◽  
Patricia Briones-Fourzán

Spiny lobsters have a protracted pelagic, oceanic larval phase. The final larval stage metamorphoses into a non-feeding postlarva (puerulus) that actively swims towards the coast to settle in shallow habitats and does not resume feeding until after the molt into the first-stage juvenile. Therefore, the body dimensions and nutritional condition of both settled pueruli and first juveniles are likely to vary over time, potentially playing a crucial role in the recruitment to the benthic population. We compared carapace length (CL), height (CH), and width (CW); total length (TL), and body weight (W) between pueruli and first juveniles of the Caribbean spiny lobster, Panulirus argus, as well as morphometric relationships between both developmental stages. Except for CL, all other dimensions were larger in first juveniles, but more markedly CH and W. The slopes of the CH vs CL, CW vs CL, and W vs CL regressions differed significantly between stages, and all log-transformed relationships showed isometry in both stages, except for the CH vs CL relationship, which showed positive allometry. These results reflect a morphological change from the flatter, more streamlined body of the puerulus, to the heavier, more cylindrical body of the juvenile. We also analyzed seasonal variations in CL, W, the W/CL index (a morphometric condition index), and a modified W/CL index (i.e. after controlling for a significant effect of CL) of both stages using individuals monthly collected over 12 consecutive seasons (Autumn 2010–Summer 2013). In both stages, all three variables exhibited significant seasonal variation. For pueruli, the modified W/CL index differed from average in only two seasons, winter 2011 (higher) and summer 2013 (lower), but showed great within-season variation (larger coefficients of variation, CV), potentially reflecting variability in nutritional condition of larvae prior to metamorphosis and in the distances swum by individual pueruli to the settlement habitats. For first juveniles, the modified W/CL index was higher than average in winter and spring 2011, and lower in autumn 2011 and winter 2012, but showed less within season variation (smaller CVs), suggesting a combination of carry-over effects of puerulus condition and effects of local conditions (e.g., food availability and predation risk). These findings warrant further investigation into factors potentially decoupling settlement from recruitment processes.


2018 ◽  
Vol 76 (2) ◽  
pp. 442-451 ◽  
Author(s):  
Gaya Gnanalingam ◽  
Mark J Butler ◽  
Thomas R Matthews ◽  
Emily Hutchinson ◽  
Raouf Kilada

Abstract In crustaceans, ecdysis was long believed to result in the loss and replacement of all calcified structures, precluding the use of conventional ageing methods. However, the discovery of bands in the gastric ossicles of several crustaceans with some correlation with age suggests that direct age estimation may be possible. We applied this method to a tropical spiny lobster, Panulirus argus, one of the most iconic and economically valuable species in the Caribbean. The presence of growth bands was investigated using wild lobsters of unknown age and was validated with captive reared lobsters of known age (1.5–10 years) from the Florida Keys, Florida (USA). Bands were consistently identified in ptero- and zygo-cardiac ossicles of the gastric mill and did not appear to be associated with moulting. Validation with known age animals confirms that bands form annually. Counts between independent readers were reproducible with coefficients of variation ranging from 11% to 26% depending on reader experience and the structure used. This study demonstrates, for the first time, that direct age determination of P. argus is possible.


Sign in / Sign up

Export Citation Format

Share Document