scholarly journals Development and characterization of 29 polymorphic microsatellite loci of Megalobrama pellegrini by next-generation sequencing technology and cross-species amplification in related species

Author(s):  
Wen Song ◽  
Dongmei Zhu ◽  
Yefeng Lv ◽  
Weimin Wang

Megalobrama pellegrini is one of the economically important freshwater fish in China. Here, we developed 29 polymorphic microsatellite loci of M. pellegrini. The number of alleles (Na), effective number of alleles (Ne), observed heterozygosity (HO), expected heterozygosity (HE) and polymorphic information content (PIC) ranged from 3 to 11 (mean±SD 5.4828±1.9571), 2.8708 to 9.6257 (mean±SD 5.0865±1.6681), 0.4333 to 0.9333 (mean±SD 0.7874±0.1213), 0.6627 to 0.9113 (mean±SD 0.7946±0.0751) and 0.5785 to 0.8868 (mean±SD 0.7439±0.0950), respectively. Cross-species amplification was successful at most loci for related species such as M. amblycephala, M. hoffmanni, M. skolkovii and Parabramis pekinensis. The transferability rate of the 29 polymorphic microsatellite markers in M. amblycephala, M. hoffmanni, M. skolkovii and P. pekinensis were 96.55%, 86.21%, 86.21% and 75.86%, respectively. These polymorphic microsatellites are not only useful in genetic study and conservation of M. pellegrini, but also an effective tool for identifying the related species. We could use 5 microsatellite markers (HHF-63, HHF-104, HHF-113, HHF-148, HHF-163) to distinguish the 5 species.

Author(s):  
Wen Song ◽  
Dongmei Zhu ◽  
Yefeng Lv ◽  
Weimin Wang

Megalobrama pellegrini is one of the economically important freshwater fish in China. Here, we developed 29 polymorphic microsatellite loci of M. pellegrini. The number of alleles (Na), effective number of alleles (Ne), observed heterozygosity (HO), expected heterozygosity (HE) and polymorphic information content (PIC) ranged from 3 to 11 (mean±SD 5.4828±1.9571), 2.8708 to 9.6257 (mean±SD 5.0865±1.6681), 0.4333 to 0.9333 (mean±SD 0.7874±0.1213), 0.6627 to 0.9113 (mean±SD 0.7946±0.0751) and 0.5785 to 0.8868 (mean±SD 0.7439±0.0950), respectively. Cross-species amplification was successful at most loci for related species such as M. amblycephala, M. hoffmanni, M. skolkovii and Parabramis pekinensis. The transferability rate of the 29 polymorphic microsatellite markers in M. amblycephala, M. hoffmanni, M. skolkovii and P. pekinensis were 96.55%, 86.21%, 86.21% and 75.86%, respectively. These polymorphic microsatellites are not only useful in genetic study and conservation of M. pellegrini, but also an effective tool for identifying the related species. We could use 5 microsatellite markers (HHF-63, HHF-104, HHF-113, HHF-148, HHF-163) to distinguish the 5 species.


2018 ◽  
Author(s):  
Bruce F Murray ◽  
Michael A Reid ◽  
Shu-Biao Wu

Duma florulenta and Acacia stenophylla are two ecologically important but understudied species that naturally occur on the floodplains and riverbanks of Australia’s arid and semi-arid river systems. This paper describes the discovery and characterization of 12 and 13 polymorphic microsatellite markers for D. florulenta and A. stenophylla respectively. The number of alleles per locus for D. florulenta ranged from 2-12 with an average of 6.1. Across all samples, observed and expected heterozygosities ranged from 0.026 to 0.784 and 0.026 to 0.824 respectively and mean polymorphic information content was equal to 0.453. For A. stenophylla, the number of alleles per locus ranged between 2 and 8 with an overall mean of 4.8. Across all samples, observed and expected heterozygosities ranged from 0.029 to 0.650 and 0.029 to 0.761 respectively and mean polymorphic information content was 0.388. The developed suites of 12 and 13 microsatellite markers for D. florulenta and A. stenophylla respectively provide opportunity for novel research into mechanisms of gene flow, dispersal and breeding system and how they operate under the extreme variability these species are exposed to in the environments in which they live.


2018 ◽  
Author(s):  
Bruce F Murray ◽  
Michael A Reid ◽  
Shu-Biao Wu

Duma florulenta and Acacia stenophylla are two ecologically important but understudied species that naturally occur on the floodplains and riverbanks of Australia’s arid and semi-arid river systems. This paper describes the discovery and characterization of 12 and 13 polymorphic microsatellite markers for D. florulenta and A. stenophylla respectively. The number of alleles per locus for D. florulenta ranged from 2-12 with an average of 6.1. Across all samples, observed and expected heterozygosities ranged from 0.026 to 0.784 and 0.026 to 0.824 respectively and mean polymorphic information content was equal to 0.453. For A. stenophylla, the number of alleles per locus ranged between 2 and 8 with an overall mean of 4.8. Across all samples, observed and expected heterozygosities ranged from 0.029 to 0.650 and 0.029 to 0.761 respectively and mean polymorphic information content was 0.388. The developed suites of 12 and 13 microsatellite markers for D. florulenta and A. stenophylla respectively provide opportunity for novel research into mechanisms of gene flow, dispersal and breeding system and how they operate under the extreme variability these species are exposed to in the environments in which they live.


Sociobiology ◽  
2017 ◽  
Vol 64 (3) ◽  
pp. 352 ◽  
Author(s):  
Yu-Lei Dang ◽  
Hong-Gui Zhang ◽  
Yu-Feng Meng ◽  
Min Zhang ◽  
Sha Zhao ◽  
...  

We isolated 15 and 18 highly polymorphic genomic microsatellite markers from two subterranean termites, Reticulitermes aculabialis and R. labralis, respectively. A total of 53 alleles were detected in 15 microsatellite loci of R. aculabialis, and the alleles were 3.533±1.302 (mean±SD), while the corresponding data of R. labralis were 115 detected alleles in 18 microsatellite loci with 6.389±1.754 alleles. The observed and expected heterozygosity was 0.496±0.236 and 0.564±0.125 in R. aculabialis, and 0.368±0.263 and 0.702±0.115 in R. labralis, respectively. Seven loci were highly polymorphic (PIC>0.5) in R. aculabialis, and 15 loci were highly polymorphic (PIC>0.5) in R. labralis. All loci showed Hardy–Weinberg equilibrium. These polymorphic markers provide useful tools for population genetic and breeding system studies of subterranean termites.


2021 ◽  
Vol 21 (06) ◽  
pp. 299-308
Author(s):  
Kai Liu ◽  
Xiao-yu Feng ◽  
Heng-jia Ma ◽  
Nan Xie

This study developed and characterized 68 novel polymorphic microsatellite markers from black Amur bream Megalobrama terminalis by next-generation sequencing. Variability was tested on 36 individuals collected from Qiantang River, Zhejiang Province, China. The number of alleles per locus ranged from 2 to 13. Observed heterozygosity ranged from 0.028 to 0.944, whereas the expected heterozygosity ranged from 0.028 to 0.887. Polymorphism Information Content ranged from 0.027 to 0.862. Moreover, 53 microsatellites were in agreement with Hardy–Weinberg equilibrium. Twenty-eight pairwise tests in 33 microsatellite loci indicated linkage disequilibrium. These microsatellites are a valuable tool for further genetics studies of this species.


Sign in / Sign up

Export Citation Format

Share Document