scholarly journals NEON NIST data science evaluation challenge: methods and results of team Conor

Author(s):  
Conor A McMahon

The NIST DSE Plant Identification challenge is a new periodic competition focused on improving and generalizing remote sensing processing methods for forest landscapes. To compete in the competition, I created a pipeline to perform three remote sensing tasks. First, a NDVI- and height-thresholded watershed segmentation was performed to identify individual tree crowns using LIDAR height measurements. Second, remote sensing data for segmented crowns was aligned with ground measurements by choosing the set of pairings which minimized error in position and in crown area as predicted by stem height. Third, species classification was performed by reducing the dataset's dimensionality through PCA and then constructing a set of maximum likelihood classifiers to estimate species likelihoods for each tree. Of the three algorithms, the classification routine exhibited the strongest relative performance, with the segmentation algorithm performing the least well.

Author(s):  
Conor A McMahon

The NIST DSE Plant Identification challenge is a new periodic competition focused on improving and generalizing remote sensing processing methods for forest landscapes. To compete in the competition, I created a pipeline to perform three remote sensing tasks. First, a NDVI- and height-thresholded watershed segmentation was performed to identify individual tree crowns using LIDAR height measurements. Second, remote sensing data for segmented crowns was aligned with ground measurements by choosing the set of pairings which minimized error in position and in crown area as predicted by stem height. Third, species classification was performed by reducing the dataset's dimensionality through PCA and then constructing a set of maximum likelihood classifiers to estimate species likelihoods for each tree. Of the three algorithms, the classification routine exhibited the strongest relative performance, with the segmentation algorithm performing the least well.


PeerJ ◽  
2019 ◽  
Vol 6 ◽  
pp. e5837 ◽  
Author(s):  
Conor A. McMahon

The National Institute of Standards and Technology data science evaluation plant identification challenge is a new periodic competition focused on improving and generalizing remote sensing processing methods for forest landscapes. I created a pipeline to perform three remote sensing tasks. First, a marker-controlled watershed segmentation thresholded by vegetation index and height was performed to identify individual tree crowns within the canopy height model. Second, remote sensing data for segmented crowns was aligned with ground measurements by choosing the set of pairings which minimized error in position and in crown area as predicted by stem height. Third, species classification was performed by reducing the dataset’s dimensionality through principle component analysis and then constructing a set of maximum likelihood classifiers to estimate species likelihoods for each tree. Of the three algorithms, the classification routine exhibited the strongest relative performance, with the segmentation algorithm performing the least well.


PeerJ ◽  
2019 ◽  
Vol 6 ◽  
pp. e6227 ◽  
Author(s):  
Michele Dalponte ◽  
Lorenzo Frizzera ◽  
Damiano Gianelle

An international data science challenge, called National Ecological Observatory Network—National Institute of Standards and Technology data science evaluation, was set up in autumn 2017 with the goal to improve the use of remote sensing data in ecological applications. The competition was divided into three tasks: (1) individual tree crown (ITC) delineation, for identifying the location and size of individual trees; (2) alignment between field surveyed trees and ITCs delineated on remote sensing data; and (3) tree species classification. In this paper, the methods and results of team Fondazione Edmund Mach (FEM) are presented. The ITC delineation (Task 1 of the challenge) was done using a region growing method applied to a near-infrared band of the hyperspectral images. The optimization of the parameters of the delineation algorithm was done in a supervised way on the basis of the Jaccard score using the training set provided by the organizers. The alignment (Task 2) between the delineated ITCs and the field surveyed trees was done using the Euclidean distance among the position, the height, and the crown radius of the ITCs and the field surveyed trees. The classification (Task 3) was performed using a support vector machine classifier applied to a selection of the hyperspectral bands and the canopy height model. The selection of the bands was done using the sequential forward floating selection method and the Jeffries Matusita distance. The results of the three tasks were very promising: team FEM ranked first in the data science competition in Task 1 and 2, and second in Task 3. The Jaccard score of the delineated crowns was 0.3402, and the results showed that the proposed approach delineated both small and large crowns. The alignment was correctly done for all the test samples. The classification results were good (overall accuracy of 88.1%, kappa accuracy of 75.7%, and mean class accuracy of 61.5%), although the accuracy was biased toward the most represented species.


Author(s):  
Michele Dalponte ◽  
Lorenzo Frizzera ◽  
Damiano Gianelle

An international data science challenge, called NEON NIST data science evaluation, was set up in autumn 2017 with the goal to improve the use of remote sensing data in ecological applications. The competition was divided into three tasks: 1) segmentation of tree crowns; 2) data alignment; and 3) tree species classification. In this paper the methods and results of team FEM in the NEON NIST data science evaluation challenge are presented. The individual tree crown (ITC) segmentation (Task 1 of the challenge) was done using a region growing method applied to a near-infrared band of the hyperspectral images. The optimization of the parameters of the segmentation algorithm was done in a supervised way on the basis of the Jaccard score using the training set provided by the organizers. The alignment (Task 2) between the segmented ITCs and the ground measured trees was done using an Euclidean distance among the position, the height, and the crown radius of the ITCs and the ground trees. The classification (Task 3) was performed using a Support Vector Machine classifier applied to a selection of the hyperspectral bands. The selection of the bands was done using a Sequential Forward Floating Selection method and the Jeffries Matusita distance. The results in the three tasks were very promising: team FEM ranked first in Task 1 and 2, and second in Task 3. The segmentation results showed that the proposed approach segmented both small and large crowns. The alignment was correctly done for all the test samples. The classification results were good, even if the accuracy was biased towards the most represented species.


Author(s):  
Sergio Marconi ◽  
Sarah J. Graves ◽  
Dihong Gong ◽  
Morteza Shahriari Nia ◽  
Marion Le Bras ◽  
...  

Ecology has reached the point where data science competitions, in which multiple groups solve the same problem using the same data by different methods, will be productive for advancing quantitative methods for tasks such as species identification from remote sensing images. We ran a competition to help improve three tasks that are central to converting images into information on individual trees: 1) crown segmentation, for identifying the location and size of individual trees; 2) alignment, to match ground truthed trees with remote sensing; and 3) species classification of individual trees. Six teams (composed of 16 individual participants) submitted predictions for one or more tasks. The crown segmentation task proved to be the most challenging, with the highest-performing algorithm yielding only 34% overlap between remotely sensed crowns and the ground truthed trees. However, most algorithms performed better on larger trees. For the alignment task, an algorithm based on minimizing the difference, in terms of both position and tree size, between ground truthed and remotely sensed crowns yielded a perfect alignment. In hindsight, this task was over simplified by only including targeted trees instead of all possible remotely sensed crowns. Several algorithms performed well for species classification, with the highest-performing algorithm correctly classifying 92% of individuals and performing well on both common and rare species. Comparisons of results across algorithms provided a number of insights for improving the overall accuracy in extracting ecological information from remote sensing. Our experience suggests that this kind of competition can benefit methods development in ecology and biology more broadly.


Author(s):  
Sergio Marconi ◽  
Sarah J. Graves ◽  
Dihong Gong ◽  
Morteza Shahriari Nia ◽  
Marion Le Bras ◽  
...  

Ecology has reached the point where data science competitions, in which multiple groups solve the same problem using the same data by different methods, will be productive for advancing quantitative methods for tasks such as species identification from remote sensing images. We ran a competition to help improve three tasks that are central to converting images into information on individual trees: 1) crown segmentation, for identifying the location and size of individual trees; 2) alignment, to match ground truthed trees with remote sensing; and 3) species classification of individual trees. Six teams (composed of 16 individual participants) submitted predictions for one or more tasks. The crown segmentation task proved to be the most challenging, with the highest-performing algorithm yielding only 34% overlap between remotely sensed crowns and the ground truthed trees. However, most algorithms performed better on larger trees. For the alignment task, an algorithm based on minimizing the difference, in terms of both position and tree size, between ground truthed and remotely sensed crowns yielded a perfect alignment. In hindsight, this task was over simplified by only including targeted trees instead of all possible remotely sensed crowns. Several algorithms performed well for species classification, with the highest-performing algorithm correctly classifying 92% of individuals and performing well on both common and rare species. Comparisons of results across algorithms provided a number of insights for improving the overall accuracy in extracting ecological information from remote sensing. Our experience suggests that this kind of competition can benefit methods development in ecology and biology more broadly.


PeerJ ◽  
2019 ◽  
Vol 6 ◽  
pp. e5843 ◽  
Author(s):  
Sergio Marconi ◽  
Sarah J. Graves ◽  
Dihong Gong ◽  
Morteza Shahriari Nia ◽  
Marion Le Bras ◽  
...  

Ecology has reached the point where data science competitions, in which multiple groups solve the same problem using the same data by different methods, will be productive for advancing quantitative methods for tasks such as species identification from remote sensing images. We ran a competition to help improve three tasks that are central to converting images into information on individual trees: (1) crown segmentation, for identifying the location and size of individual trees; (2) alignment, to match ground truthed trees with remote sensing; and (3) species classification of individual trees. Six teams (composed of 16 individual participants) submitted predictions for one or more tasks. The crown segmentation task proved to be the most challenging, with the highest-performing algorithm yielding only 34% overlap between remotely sensed crowns and the ground truthed trees. However, most algorithms performed better on large trees. For the alignment task, an algorithm based on minimizing the difference, in terms of both position and tree size, between ground truthed and remotely sensed crowns yielded a perfect alignment. In hindsight, this task was over simplified by only including targeted trees instead of all possible remotely sensed crowns. Several algorithms performed well for species classification, with the highest-performing algorithm correctly classifying 92% of individuals and performing well on both common and rare species. Comparisons of results across algorithms provided a number of insights for improving the overall accuracy in extracting ecological information from remote sensing. Our experience suggests that this kind of competition can benefit methods development in ecology and biology more broadly.


2018 ◽  
Author(s):  
Shawn Taylor

This paper describes the methods used in the submission for team Shawn for the data science competition “Airborne Remote Sensing to Ecological Information”. I used canopy height rasters as well as NDVI rasters of the study area. I first filtered out pixels using a minimum NDVI threshold, then derived individual tree crowns using a watershed algorithm. I imposed limits on tree crown size and number using a minimum distance between two crowns and a maximum crown radius. All parameters were derived by minimizing the Jaccard coefficient. The final Jaccard coefficient on the training data was 0.117. All methods were implemented in Python are are available in code repositories.


Author(s):  
Shawn Taylor

This paper describes the methods used in the submission for team Shawn for the data science competition “Airborne Remote Sensing to Ecological Information”. I used canopy height rasters as well as NDVI rasters of the study area. I first filtered out pixels using a minimum NDVI threshold, then derived individual tree crowns using a watershed algorithm. I imposed limits on tree crown size and number using a minimum distance between two crowns and a maximum crown radius. All parameters were derived by minimizing the Jaccard coefficient. The final Jaccard coefficient on the training data was 0.117. All methods were implemented in Python are are available in code repositories.


2018 ◽  
Author(s):  
Michele Dalponte ◽  
Lorenzo Frizzera ◽  
Damiano Gianelle

An international data science challenge, called NEON NIST data science evaluation, was set up in autumn 2017 with the goal to improve the use of remote sensing data in ecological applications. The competition was divided into three tasks: 1) segmentation of tree crowns; 2) data alignment; and 3) tree species classification. In this paper the methods and results of team FEM in the NEON NIST data science evaluation challenge are presented. The individual tree crown (ITC) segmentation (Task 1 of the challenge) was done using a region growing method applied to a near-infrared band of the hyperspectral images. The optimization of the parameters of the segmentation algorithm was done in a supervised way on the basis of the Jaccard score using the training set provided by the organizers. The alignment (Task 2) between the segmented ITCs and the ground measured trees was done using an Euclidean distance among the position, the height, and the crown radius of the ITCs and the ground trees. The classification (Task 3) was performed using a Support Vector Machine classifier applied to a selection of the hyperspectral bands. The selection of the bands was done using a Sequential Forward Floating Selection method and the Jeffries Matusita distance. The results in the three tasks were very promising: team FEM ranked first in Task 1 and 2, and second in Task 3. The segmentation results showed that the proposed approach segmented both small and large crowns. The alignment was correctly done for all the test samples. The classification results were good, even if the accuracy was biased towards the most represented species.


Sign in / Sign up

Export Citation Format

Share Document