scholarly journals How long should the fully hillside-closed forest protection be implemented on the Loess Plateau, Shaanxi, China?

Author(s):  
Lin Hou ◽  
Sijia Hou

Background. Restoration of degraded forest ecosystem is crucial for regional sustainable development. To protect the country’s fragile and fragmented environment, the Chinese government has initiated an ecological engineering, the Natural Forest Protection Program in seventeen provinces in China since 1998. Fully hillside-closed forest protection (vegetation restoration naturally without any artificial disturbance) was one of vital measures of the Natural Forest Protection Program applied national wide. Whether plant diversity, biomass and age structure of dominant tree species and soil nutrients in protected stands may become better with increase of protected period are still open problems. Methods. We investigated community diversity, biomass of dominant tree species, age structures, and analyzed soil chemical properties of a Pinus tabulaeformis population at protected sites representing different protected ages at Huanglongshan Forest Bureau on the Loess Plateau, Shaanxi, China. Results. Plant species richness of Pinus tabulaeformis community was significantly affected (p<0.05) by forest protection and the effect attenuated with protected age.Shannon evenness index of plant species generally increased with protected age. Stands protected for 45 years had the highest tree biomass and considerable natural regeneration capacity. Contents of organic carbon, available phosphorus and available potassium in top soil increased in protected stands less than 45 years, however decreased significantly thereafter. Long-term forest protection also decreased content of mineral nitrogen in top soil. Discussion. We found that richness of shrubs and herbs was significantly affected by forest protection, and evenness indices of tree, shrub and herb increased inconsistently with protected ages. Forest protection created more complex age structures and tree densities with increasing age of protection. Content of soil mineral nitrogen at 0-20 cm soil depth showed a decreasing trend in stands of up to 30 years. Soil available phosphorus and potassium contents were higher in stands with greater proportions of big and middle trees. Long-term protection (> 45 years) of Pinus tabulaeformis stand in southeast Loess Plateau, China, may be associated with decreasing plant species richness, proportion of medium to large trees, dominant biomass of Pinus tabulaeformis and soil nutrients.

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3764 ◽  
Author(s):  
Lin Hou ◽  
Sijia Hou

Background Restoration of degraded forest ecosystem is crucial for regional sustainable development. To protect the country’s fragile and fragmented environment, the Chinese government initiated an ecological engineering project, the Natural Forest Protection Program, in seventeen provinces in China beginning in 1998. Fully hillside-closed forest protection (vegetation restoration naturally without any artificial disturbance) was one of vital measures of the Natural Forest Protection Program applied nation wide. Whether plant diversity, biomass and age structure of dominant tree species and soil nutrients in protected stands may become better with increase of protected period are still open problems. Methods We investigated community diversity, biomass of dominant tree species, age structures, and analyzed soil chemical properties of a Pinus tabulaeformis population at protected sites representing different protected ages at Huanglongshan Forest Bureau on the Loess Plateau, Shaanxi, China. Results Plant species richness of Pinus tabulaeformis community was significantly affected (p < 0.05) by forest protection and the effect attenuated with protection age. Shannon evenness index of plant species generally increased with protection age. Stands protected for 45 years had the highest tree biomass and considerable natural regeneration capacity. Contents of organic carbon, available phosphorus and available potassium in top soil increased in protected stands less than 45 years, however decreased significantly thereafter. Long-term forest protection also decreased the content of mineral nitrogen in top soil. Discussion We found that the richness of shrubs and herbs was significantly affected by forest protection, and evenness indices of tree, shrub and herb increased inconsistently with protected ages. Forest protection created more complex age structures and tree densities with increasing age of protection. Content of soil mineral nitrogen at 0–20 cm soil depth showed a decreasing trend in stands of up to 30 years. Soil available phosphorus and potassium contents were higher in stands with greater proportions of big and medium trees. Long-term protection (>45 years) of Pinus tabulaeformis stands in southeast Loess Plateau, China, may be associated with decreasing plant species richness, proportion of medium to large trees, dominant biomass of Pinus tabulaeformis and soil nutrients.


2017 ◽  
Author(s):  
Lin Hou ◽  
Sijia Hou

Background. Restoration of degraded forest ecosystem is crucial for regional sustainable development. To protect the country’s fragile and fragmented environment, the Chinese government has initiated an ecological engineering, the Natural Forest Protection Program in seventeen provinces in China since 1998. Fully hillside-closed forest protection (vegetation restoration naturally without any artificial disturbance) was one of vital measures of the Natural Forest Protection Program applied national wide. Whether plant diversity, biomass and age structure of dominant tree species and soil nutrients in protected stands may become better with increase of protected period are still open problems. Methods. We investigated community diversity, biomass of dominant tree species, age structures, and analyzed soil chemical properties of a Pinus tabulaeformis population at protected sites representing different protected ages at Huanglongshan Forest Bureau on the Loess Plateau, Shaanxi, China. Results. Plant species richness of Pinus tabulaeformis community was significantly affected (p<0.05) by forest protection and the effect attenuated with protection age.Shannon evenness index of plant species generally increased with protection age. Stands protected for 45 years had the highest tree biomass and considerable natural regeneration capacity. Contents of organic carbon, available phosphorus and available potassium in top soil increased in protected stands less than 45 years, however decreased significantly thereafter. Long-term forest protection also decreased content of mineral nitrogen in top soil. Discussion. We found that richness of shrubs and herbs was significantly affected by forest protection, and evenness indices of tree, shrub and herb increased inconsistently with protected ages. Forest protection created more complex age structures and tree densities with increasing age of protection. Content of soil mineral nitrogen at 0-20 cm soil depth showed a decreasing trend in stands of up to 30 years. Soil available phosphorus and potassium contents were higher in stands with greater proportions of big and middle trees. Long-term protection (> 45 years) of Pinus tabulaeformisstand in southeast Loess Plateau, China, may be associated with decreasing plant species richness, proportion of medium to large trees, dominant biomass of Pinus tabulaeformis and soil nutrients.


2017 ◽  
Author(s):  
Lin Hou ◽  
Sijia Hou

Background. Restoration of degraded forest ecosystem is crucial for regional sustainable development. To protect the country’s fragile and fragmented environment, the Chinese government has initiated an ecological engineering, the Natural Forest Protection Program in seventeen provinces in China since 1998. Fully hillside-closed forest protection (vegetation restoration naturally without any artificial disturbance) was one of vital measures of the Natural Forest Protection Program applied national wide. Whether plant diversity, biomass and age structure of dominant tree species and soil nutrients in protected stands may become better with increase of protected period are still open problems. Methods. We investigated community diversity, biomass of dominant tree species, age structures, and analyzed soil chemical properties of a Pinus tabulaeformis population at protected sites representing different protected ages at Huanglongshan Forest Bureau on the Loess Plateau, Shaanxi, China. Results. Plant species richness of Pinus tabulaeformis community was significantly affected (p<0.05) by forest protection and the effect attenuated with protected age.Shannon evenness index of plant species generally increased with protected age. Stands protected for 45 years had the highest tree biomass and considerable natural regeneration capacity. Contents of organic carbon, available phosphorus and available potassium in top soil increased in protected stands less than 45 years, however decreased significantly thereafter. Long-term forest protection also decreased content of mineral nitrogen in top soil. Discussion. We found that richness of shrubs and herbs was significantly affected by forest protection, and evenness indices of tree, shrub and herb increased inconsistently with protected ages. Forest protection created more complex age structures and tree densities with increasing age of protection. Content of soil mineral nitrogen at 0-20 cm soil depth showed a decreasing trend in stands of up to 30 years. Soil available phosphorus and potassium contents were higher in stands with greater proportions of big and middle trees. Long-term protection (> 45 years) of Pinus tabulaeformis stand in southeast Loess Plateau, China, may be associated with decreasing plant species richness, proportion of medium to large trees, dominant biomass of Pinus tabulaeformis and soil nutrients.


2004 ◽  
Vol 31 (3) ◽  
pp. 225-232 ◽  
Author(s):  
MICHAEL O'NEAL CAMPBELL

There is increased international interest in religiously based restrictions on land and forest stand use. However, the extent to which so-called sacred groves represent earlier forest ecosystems, and their possible role in biodiversity conservation, are interrelated and complex issues, and neglected in the context of Ghanaian savannahs, which are believed to be in transition from a forested past. Geographical information system (GIS) analysis of time-series images, aerial photographs, statistical analysis of ecological field data and social surveys were used to investigate the Ghanaian savannah. Sacred groves were found to be similar in plant species content and structure to the deciduous forest of southern Ghana. Between 1960 and 1996, these groves experienced far fewer forest losses than unprotected tree stands (<20%, as opposed to up to 100%). Non-sacred groves also contained lower plant species richness and higher numbers of invasive species such as neem (Azadirachta indica A. Juss). Sacred groves, while dependent on respect for religion, local cultural structures and individual peer pressure, offer a role that may support and also be supported by official conservation efforts.


2008 ◽  
Vol 84 (3-4) ◽  
pp. 200-211 ◽  
Author(s):  
Lotten J. Johansson ◽  
Karin Hall ◽  
Honor C. Prentice ◽  
Margareta Ihse ◽  
Triin Reitalu ◽  
...  

2020 ◽  
Author(s):  
Christine Fischer ◽  
Sophia Leimer ◽  
Christiane Roscher ◽  
Janneke Ravenek ◽  
Hans de Kroon ◽  
...  

&lt;p&gt;Soil moisture is the dynamic link between climate, soil and vegetation and the dynamics and variation are affected by several often interrelated factors such as soil texture, soil structural parameters (soil organic carbon) and vegetation parameters (e.g. belowground- and aboveground biomass). For the characterization of soil moisture, including its variability and the resulting water and matter fluxes, the knowledge of the relative importance of these factors is of major challenge. Because of the spatial heterogeneity of its drivers soil moisture varies strongly over time and space. Our objective was to assess the spatio-temporal variability of soil moisture and factors which could explain that variability, like soil properties and vegetation cover, in in a long term biodiversity experiment (Jena Experiment).&lt;/p&gt;&lt;p&gt;The Jena Experiment consist 86 plots on which plant species richness (0, 1, 2, 4, 8, 16, and 60) and functional groups (legumes, grasses, tall herbs, and small herbs) were manipulated in a factorial design Soil moisture measurements were performed weekly April to September 2003-2005 and 2008-2013 in 0.1, 0.2, 0.3, 0.4, and 0.6 m soil depth using Delta T theta probe.&lt;/p&gt;&lt;p&gt;The analysis showed that both plant species richness and the presence of particular functional groups affected soil water content, while functional group richness per se played no role. Plots containing grasses was consistently drier than average at the soil surface in all observed years while plots containing legumes comparatively moister, but only up to the year 2008.&lt;/p&gt;&lt;p&gt;Interestingly, plant species richness led to moister than average subsoil at the beginning of the experiment (2003 and 2004), which changed to lower than average up to the year 2010 in all depths.Shortly after establishment, increased topsoil water content was related to higher leaf area index in species&amp;#8208;rich plots, which enhanced shading. In later years, higher species richness increased topsoil organic carbon, likely improving soil aggregation. Improved aggregation, in turn, dried topsoils in species&amp;#8208;rich plots due to faster drainage of rainwater.&lt;/p&gt;&lt;p&gt;Our decade&amp;#8208;long experiment shows that besides abiotic factors like texture, soil water patterns are consistently affected by biotic factors such as species diversity and plant functional types, but also properties that originate from biotic-abiotic interactions such as soil structure. Especially the effect of plant species richness propagated to deeper soil layers 8 years after the establishment of the experiment, and while originally caused by shading it was later related to altered soil physical characteristics in addition to modification of water uptake depth. Functional groups affected soil water distribution, likely due to plant traits affecting root water uptake depths, shading, or water&amp;#8208;use efficiency. Our results highlight the role of vegetation composition for soil processes and emphasize the need for long-term experiments to discover diversity effects in slow reacting systems like soil.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document