scholarly journals Extremal length and Dirichlet problem on Klein surfaces

2019 ◽  
Vol 39 (2) ◽  
pp. 281-296
Author(s):  
Monica Roşiu

The object of this paper is to extend the method of extremal length to Klein surfaces by solving conformally invariant extremal problems on the complex double. Within this method we define the extremal length, the extremal distance, the conjugate extremal distance, the modulus, the reduced extremal distance on a Klein surface and we study their dependences on arcs.

2012 ◽  
Vol 54 (3) ◽  
pp. 507-515
Author(s):  
ANTONIO F. COSTA ◽  
WENDY HALL ◽  
DAVID SINGERMAN

Historical note. A non-orientable surface of genus 2 (meaning 2 cross-caps) is popularly known as the Klein bottle. However, the term Klein surface comes from Felix Klein's book “On Riemann's Theory of Algebraic Functions and their Integrals” (1882) where he introduced such surfaces in the final chapter.


1991 ◽  
Vol 33 (1) ◽  
pp. 61-71 ◽  
Author(s):  
Coy L. May

A compact bordered Klein surface X of algebraic genus g ≥ 2 has maximal symmetry [6] if its automorphism group A(X) is of order 12(g — 1), the largest possible. The bordered surfaces with maximal symmetry are clearly of special interest and have been studied in several recent papers ([6] and [9] among others).


2007 ◽  
Vol 06 (01) ◽  
pp. 103-118 ◽  
Author(s):  
COY L. MAY

Let G be a finite group. The real genus ρ(G) is the minimum algebraic genus of any compact bordered Klein surface on which G acts. Here we consider 2-groups acting on bordered Klein surfaces. The main focus is determining the real genus of each of the 51 groups of order 32. We also obtain some general results about the partial presentations that 2-groups acting on bordered surfaces must have. In addition, we obtain genus formulas for some families of 2-groups and show that if G is a 2-group with positive real genus, then ρ(G) ≡ 1 mod 4.


1995 ◽  
Vol 37 (2) ◽  
pp. 221-232 ◽  
Author(s):  
E. Bujalance ◽  
J. M. Gamboa ◽  
C. Maclachlan

In the nineteenth century, Hurwitz [8] and Wiman [14] obtained bounds for the order of the automorphism group and the order of each automorphism of an orientable and unbordered compact Klein surface (i. e., a compact Riemann surface) of topological genus g s 2. The corresponding results of bordered surfaces are due to May, [11], [12]. These may be considered as particular cases of the general problem of finding the minimum topological genus of a surface for which a given finite group G is a group of automorphisms. This problem was solved for cyclic and abelian G by Harvey [7] and Maclachlan [10], respectively, in the case of Riemann surfaces and by Bujalance [2], Hall [6] and Gromadzki [5] in the case of non-orientable and unbordered Klein surfaces. In dealing with bordered Klein surfaces, the algebraic genus—i. e., the topological genus of the canonical double covering, (see Alling-Greenleaf [1])—was minimized by Bujalance- Etayo-Gamboa-Martens [3] in the case where G is cyclic and by McCullough [13] in the abelian case.


1985 ◽  
Vol 26 (1) ◽  
pp. 31-34 ◽  
Author(s):  
David Singerman

Let X be a bordered Klein surface, by which we mean a Klein surface with non-empty boundary. X is characterized topologically by its orientability, the number k of its boundary components and the genus p of the closed surface obtained by filling in all the holes. The algebraic genus g of X is defined by.If g≥2 it is known that if G is a group of automorphisms of X then |G|≤12(g-l) and that the upper bound is attained for infinitely many values of g ([4], [5]). A bordered Klein surface for which this upper bound is attained is said to have maximal symmetry. A group of 12(g-l) automorphisms of a bordered Klein surface of algebraic genus g is called an M*-group and it is known that a finite group G is an M*-group if and only if it is generated by 3 non-trivial elements T1, T2, T3 which obey the relations([4]).


1994 ◽  
Vol 36 (3) ◽  
pp. 313-330 ◽  
Author(s):  
E. Bujalance ◽  
A. F. Costa ◽  
G. Gromadzki ◽  
D. Singerman

In this paper we consider complex doubles of compact Klein surfaces that have large automorphism groups. It is known that a bordered Klein surface of algebraic genus g > 2 has at most 12(g − 1) automorphisms. Surfaces for which this bound is sharp are said to have maximal symmetry. The complex double of such a surface X is a compact Riemann surface X+ of genus g and it is easy to see that if G is the group of automorphisms of X then C2 × G is a group of automorphisms of X+. A natural question is whether X+ can have a group that strictly contains C2 × G. In [8] C. L. May claimed the following interesting result: there is a unique Klein surface X with maximal symmetry for which Aut X+ properly contains C2 × Aut X (where Aut X+ denotes the group of conformal and anticonformal automorphisms of X+).


1988 ◽  
Vol 30 (1) ◽  
pp. 87-96
Author(s):  
J. A. Bujalance

If X is a Klein surface (KS) with boundary, of algebraic genus p, and Φ is an automorphism of order N, May [8] proved that N ≤ 2p + 2 when X is orientable and p is even, and N ≤ 2p otherwise.He proved also that the unique topological type of an orientable KS having an orientation-preserving automorphism of maximum order is a surface with one boundary component when p is even, with two boundary components when p is odd.


1985 ◽  
Vol 26 (1) ◽  
pp. 75-81 ◽  
Author(s):  
J. J. Etayo Gordejuela

A problem of special interest in the study of automorphism groups of surfaces are the bounds of the orders of the groups as a function of the genus of the surface.May has proved that a Klein surface with boundary of algebraic genus p has at most 12(p–1) automorphisms [9].In this paper we study the highest possible prime order for a group of automorphisms of a Klein surface. This problem was solved for Riemann surfaces by Moore in [10]. We shall use his results for studying the Klein surfaces that are not Riemann surfaces. The more general result that we obtain is the following: if X is a Klein surface of algebraic genus p, and G is a group of automorphisms of X, of prime order n, then n ≤ p + 1.


1977 ◽  
Vol 18 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Coy L. May

LetXbe a Klein surface [1], that is,Xis a surface with boundary მXtogether with a dianalytic structure onX. A homeomorphismf:X→XofXonto itself that is dianalytic will be called anautomorphismofX.


Sign in / Sign up

Export Citation Format

Share Document