scholarly journals DOUBLES OF KLEIN SURFACES

2012 ◽  
Vol 54 (3) ◽  
pp. 507-515
Author(s):  
ANTONIO F. COSTA ◽  
WENDY HALL ◽  
DAVID SINGERMAN

Historical note. A non-orientable surface of genus 2 (meaning 2 cross-caps) is popularly known as the Klein bottle. However, the term Klein surface comes from Felix Klein's book “On Riemann's Theory of Algebraic Functions and their Integrals” (1882) where he introduced such surfaces in the final chapter.

1991 ◽  
Vol 33 (1) ◽  
pp. 61-71 ◽  
Author(s):  
Coy L. May

A compact bordered Klein surface X of algebraic genus g ≥ 2 has maximal symmetry [6] if its automorphism group A(X) is of order 12(g — 1), the largest possible. The bordered surfaces with maximal symmetry are clearly of special interest and have been studied in several recent papers ([6] and [9] among others).


2006 ◽  
Vol 49 (4) ◽  
pp. 624-627
Author(s):  
Masakazu Teragaito

AbstractFor a non-trivial knot in the 3-sphere, only integral Dehn surgery can create a closed 3-manifold containing a projective plane. If we restrict ourselves to hyperbolic knots, the corresponding claim for a Klein bottle is still true. In contrast to these, we show that non-integral surgery on a hyperbolic knot can create a closed non-orientable surface of any genus greater than two.


2007 ◽  
Vol 06 (01) ◽  
pp. 103-118 ◽  
Author(s):  
COY L. MAY

Let G be a finite group. The real genus ρ(G) is the minimum algebraic genus of any compact bordered Klein surface on which G acts. Here we consider 2-groups acting on bordered Klein surfaces. The main focus is determining the real genus of each of the 51 groups of order 32. We also obtain some general results about the partial presentations that 2-groups acting on bordered surfaces must have. In addition, we obtain genus formulas for some families of 2-groups and show that if G is a 2-group with positive real genus, then ρ(G) ≡ 1 mod 4.


Author(s):  
Denis A. Baranov ◽  
Olga V. Pochinka

Abstract. In this paper, we find all admissible topological conjugacy classes of periodic transformations of a two-dimensional surface of genus two. It is proved that there are exactly seventeen pairwise topologically non-conjugate orientation-preserving periodic pretzel transformations. The implementation of all classes by lifting the full characteristics of mappings from a modular surface to a surface of genus two is also presented. The classification results are based on Nielsen’s theory of periodic surface transformations, according to which the topological conjugacy class of any such homeomorphism is completely determined by its characteristic. The complete characteristic carries information about the genus of the modular surface, the ramified bearing surface, the periods of the ramification points and the turns around them. The necessary and sufficient conditions for the admissibility of the complete characteristic are described by Nielsen and for any surface they give a finite number of admissible collections. For surfaces of a small genus, one can compile a complete list of admissible characteristics, which was done by the authors of the work for a surface of genus 2.


2004 ◽  
Vol 19 (13) ◽  
pp. 2123-2130
Author(s):  
Kh. SAAIDI

The large-group behavior of the nonlocal two-dimensional generalized Yang–Mills theories ( nlgYM 2's) on arbitrary closed non-orientable surfaces is investigated. It is shown that all order of ϕ2k model of these theories has third order phase transition only on the projective plane (RP2). Also the phase structure of [Formula: see text] model of nlgYM 2 is studied and it is found that for γ>0, this model has third order phase transition only on RP 2. For γ<0, it has third order phase transition on any closed non-orientable surfaces except RP 2 and Klein bottle.


1995 ◽  
Vol 37 (2) ◽  
pp. 221-232 ◽  
Author(s):  
E. Bujalance ◽  
J. M. Gamboa ◽  
C. Maclachlan

In the nineteenth century, Hurwitz [8] and Wiman [14] obtained bounds for the order of the automorphism group and the order of each automorphism of an orientable and unbordered compact Klein surface (i. e., a compact Riemann surface) of topological genus g s 2. The corresponding results of bordered surfaces are due to May, [11], [12]. These may be considered as particular cases of the general problem of finding the minimum topological genus of a surface for which a given finite group G is a group of automorphisms. This problem was solved for cyclic and abelian G by Harvey [7] and Maclachlan [10], respectively, in the case of Riemann surfaces and by Bujalance [2], Hall [6] and Gromadzki [5] in the case of non-orientable and unbordered Klein surfaces. In dealing with bordered Klein surfaces, the algebraic genus—i. e., the topological genus of the canonical double covering, (see Alling-Greenleaf [1])—was minimized by Bujalance- Etayo-Gamboa-Martens [3] in the case where G is cyclic and by McCullough [13] in the abelian case.


2011 ◽  
Vol 54 (1) ◽  
pp. 91-97 ◽  
Author(s):  
Benjamin Fine ◽  
Gerhard Rosenberger

AbstractA conjecture of Gromov states that a one-ended word-hyperbolic group must contain a subgroup that is isomorphic to the fundamental group of a closed hyperbolic surface. Recent papers by Gordon and Wilton and by Kim and Wilton give sufficient conditions for hyperbolic surface groups to be embedded in a hyperbolic Baumslag double G. Using Nielsen cancellation methods based on techniques from previous work by the second author, we prove that a hyperbolic orientable surface group of genus 2 is embedded in a hyperbolic Baumslag double if and only if the amalgamated word W is a commutator: that is, W = [U, V] for some elements U, V ∈ F. Furthermore, a hyperbolic Baumslag double G contains a non-orientable surface group of genus 4 if and only if W = X2Y2 for some X, Y ∈ F. G can contain no non-orientable surface group of smaller genus.


2019 ◽  
Vol 39 (2) ◽  
pp. 281-296
Author(s):  
Monica Roşiu

The object of this paper is to extend the method of extremal length to Klein surfaces by solving conformally invariant extremal problems on the complex double. Within this method we define the extremal length, the extremal distance, the conjugate extremal distance, the modulus, the reduced extremal distance on a Klein surface and we study their dependences on arcs.


1985 ◽  
Vol 26 (1) ◽  
pp. 31-34 ◽  
Author(s):  
David Singerman

Let X be a bordered Klein surface, by which we mean a Klein surface with non-empty boundary. X is characterized topologically by its orientability, the number k of its boundary components and the genus p of the closed surface obtained by filling in all the holes. The algebraic genus g of X is defined by.If g≥2 it is known that if G is a group of automorphisms of X then |G|≤12(g-l) and that the upper bound is attained for infinitely many values of g ([4], [5]). A bordered Klein surface for which this upper bound is attained is said to have maximal symmetry. A group of 12(g-l) automorphisms of a bordered Klein surface of algebraic genus g is called an M*-group and it is known that a finite group G is an M*-group if and only if it is generated by 3 non-trivial elements T1, T2, T3 which obey the relations([4]).


1961 ◽  
Vol 5 (2) ◽  
pp. 49-66 ◽  
Author(s):  
Jens Mennicke

The object of this note is to study the regular coverings of the closed orientable surface of genus 2.Let the closed orientable surfaceFhof genushbe a covering ofF2and letand f be the fundamental groups respectively. Thenis a subgroup of f of indexn = h − 1. A covering is called regular ifis normal in f.Conversely, letbe a normal subgroup of f of finite index. Then there is a uniquely determined regular coveringFhsuch thatis the fundamental group ofFh. The coveringFhis an orientable surface. Since the indexnofin f is supposed to be finite,Fhis closed, and its genus is given byn=h − 1.The fundamental group f can be defined by.


Sign in / Sign up

Export Citation Format

Share Document