scholarly journals Superharmonic resonance bifurcation control of parametrically excited system based on state feedback strategy

2004 ◽  
Vol 53 (9) ◽  
pp. 2889
Author(s):  
Fu Wen-Bin ◽  
Tang Jia-Shi
IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
N. A. Saeed ◽  
Galal M. Moatimid ◽  
Fawzy M. Elsabaa ◽  
Yomna. Y. Ellabban ◽  
S. K. Elagan ◽  
...  

2021 ◽  
Author(s):  
Jie Wen ◽  
Yuanhao Shi ◽  
Jianfang Jia ◽  
Jianchao Zeng

The exponential stabilization of eigenstates by using switching state feedback strategy for quantum spin-$\frac{1}{2}$ systems is considered in this paper. In order to obtain faster state exponential convergence, we divide the state space into two subspaces, and use two different continuous state feedback controls in the corresponding subspace. The two continuous state feedback controls form the switching state feedback, under which the state convergence is faster than that under continuous state feedback. The exponential convergence and the superiority of switching state feedback are proved in theory and verified in numerical simulations. Besides, the influence of the control parameter on the state convergence rate is also studied.


2020 ◽  
Vol 56 (7) ◽  
pp. 109
Author(s):  
HE Dongping ◽  
WANG Tao ◽  
XIE Jiaquan ◽  
REN Zhongkai ◽  
LIU Yuanming ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Dawei Ding ◽  
Chun Wang ◽  
Lianghui Ding ◽  
Nian Wang ◽  
Dong Liang

We focus on the Hopf bifurcation control problem of a FAST TCP model with RED gateway. The system gain parameter is chosen as the bifurcation parameter, and the stable region and stability condition of the congestion control model are given by use of the linear stability analysis. When the system gain passes through a critical value, the system loses the stability and Hopf bifurcation occurs. Considering the negative influence caused by Hopf bifurcation, we apply state feedback controller, hybrid controller, and time-delay feedback controller to postpone the onset of undesirable Hopf bifurcation. Numerical simulations show that the hybrid controller is the most sensitive method to delay the Hopf bifurcation with identical parameter conditions. However, nonlinear state feedback control and time-delay feedback control schemes have larger control parameter range in the Internet congestion control system with FAST TCP and RED gateway. Therefore, we can choose proper control method based on practical situation including unknown conditions or parameter requirements. This paper plays an important role in setting guiding system parameters for controlling the FAST TCP and RED model.


2013 ◽  
Vol 23 (06) ◽  
pp. 1330018 ◽  
Author(s):  
MIN XIAO ◽  
WEI XING ZHENG ◽  
JINDE CAO

This paper proposes to use a state feedback method to control the Hopf bifurcation for a novel congestion control model, i.e. the exponential random early detection (RED) algorithm with a single link and a single source. The gain parameter of the congestion control model is chosen as the bifurcation parameter. The analysis shows that in the absence of the state feedback controller, the model loses stability via the Hopf bifurcation early, and can maintain a stationary sending rate only in a certain domain of the gain parameter. When applying the state feedback controller to the model, the onset of the undesirable Hopf bifurcation is postponed. Thus, the stability domain is extended, and the model possesses a stable sending rate in a larger parameter range. Furthermore, explicit formulae to determine the properties of the Hopf bifurcation are obtained. Numerical simulations are given to justify the validity of the state feedback controller in bifurcation control.


Sign in / Sign up

Export Citation Format

Share Document