fast tcp
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 5)

H-INDEX

12
(FIVE YEARS 0)

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jiyang Ye ◽  
Bowen Huang ◽  
Xiaolong Chen

The development of personalized medical systems should be supported by a fast and stable network system. The FAST TCP network system is the appropriate support system for this purpose. However, when the FAST TCP is deployed, the static mapping selection method for protocol parameters is unable to guarantee the small queuing delay and fast convergence of the network simultaneously. By conducting theoretical analysis and simulation experiments, the relationships among FAST TCP protocol slow start condition, control law gain parameters, and FAST TCP system convergence rate were examined. To ensure the stability of the FAST TCP system and to select the smallest protocol parameters, an improved method to effectively accelerate the convergence velocity of the FAST TCP system is proposed in this study. In this method, the number of packets for staying in the buffer for FAST TCP connections was taken as the criterion of the slow start, and the gain parameter of the control law was dynamically adjusted according to the local information of each FAST TCP connection. Using this improved method, the FAST TCP system can achieve a stable and small queuing delay, whilst the FAST TCP system could converge quickly to the equilibrium point simultaneously.


Author(s):  
Xushi Mei ◽  
Xiaolong Chen

When a source end adopted FAST TCP to actively control the sending window, and the link end adopted active queue management algorithm, if the network parameters were improperly set, the system can be unstable. The relationship between the stability and network parameters was quantitatively analyzed. Aiming at the defect of network instability caused by radical window halving strategy, a new method based on stability analysis was proposed to make full use of the historical change information obtained by the source-end and to improve the window adjusting strategy of FAST TCP protocol according to the congestion status. Thus, the parameters of the active queue controller was modified indirectly to improve the stability of the system. Ns-2 simulation result verified the accuracy of the stability theory analysis and the effectiveness of the improvement strategy.


2019 ◽  
Vol 9 (21) ◽  
pp. 4698
Author(s):  
Sarfraz Ahmad ◽  
Muhammad Junaid Arshad

The purpose of this study is to enhance the performance of Multistream Fast Transmission Control Protocol (TCP) keeping in view the recent web-based applications that are being deployed on long-range, high-speed, and high-bandwidth networks. To achieve the objective of the research study, a congestion control after fast-recovery module for congestion control scheme of Multistream Fast TCP is proposed. The module optimized the performance of the protocol by reducing the time that is required to consume the available bandwidth after a fast-recovery phase. The module is designed after studying additive-increase, multiplicative-decrease and rate-based congestion window management schemes of related transport protocols. The module adjusts the congestion window on receipt of each individual acknowledgment instead of each round trip time after the fast-recovery phase until it consumes vacant bandwidth of the network link. The module is implemented by using Network Simulator 2. Convergence time, throughput, fairness index, and goodput are the parameters used to assess the performance of proposed module. The results indicate that Enhanced Multistream Fast TCP with congestion control after fast recovery recovers its congestion window in a shorter time period as compared to multistream Fast TCP, Fast TCP, TCP New Reno, and Stream Control Transmission Protocol. Consequently, Enhanced Multistream Fast TCP consumes the available network bandwidth in lesser time and increases the throughput and goodput. The proposed module enhanced the performance of the transport layer protocol. Our findings demonstrate the performance impact in the form of a decrease in the convergence time to consume the available network bandwidth and the increase in the throughput and the goodput.


2018 ◽  
Vol 22 (S6) ◽  
pp. 14845-14853
Author(s):  
Weibin Wang ◽  
Xiaolong Chen ◽  
Chengfu Wang ◽  
Henry Ren He
Keyword(s):  
Fast Tcp ◽  

2017 ◽  
Vol 110 ◽  
pp. 48-66 ◽  
Author(s):  
Sreelakshmi Manjunath ◽  
Gaurav Raina

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Dawei Ding ◽  
Chun Wang ◽  
Lianghui Ding ◽  
Nian Wang ◽  
Dong Liang

We focus on the Hopf bifurcation control problem of a FAST TCP model with RED gateway. The system gain parameter is chosen as the bifurcation parameter, and the stable region and stability condition of the congestion control model are given by use of the linear stability analysis. When the system gain passes through a critical value, the system loses the stability and Hopf bifurcation occurs. Considering the negative influence caused by Hopf bifurcation, we apply state feedback controller, hybrid controller, and time-delay feedback controller to postpone the onset of undesirable Hopf bifurcation. Numerical simulations show that the hybrid controller is the most sensitive method to delay the Hopf bifurcation with identical parameter conditions. However, nonlinear state feedback control and time-delay feedback control schemes have larger control parameter range in the Internet congestion control system with FAST TCP and RED gateway. Therefore, we can choose proper control method based on practical situation including unknown conditions or parameter requirements. This paper plays an important role in setting guiding system parameters for controlling the FAST TCP and RED model.


Sign in / Sign up

Export Citation Format

Share Document