Kauffman Bracket on Rational Tangles and Rational Knots

2018 ◽  
Vol 19 ◽  
pp. 75-90
Author(s):  
Khaled Bataineh ◽  
2019 ◽  
Vol 28 (14) ◽  
pp. 1950083 ◽  
Author(s):  
Takeyoshi Kogiso ◽  
Michihisa Wakui

In this paper, we build a bridge between Conway–Coxeter friezes (CCFs) and rational tangles through the Kauffman bracket polynomials. One can compute a Kauffman bracket polynomial attached to rational links by using CCFs. As an application, one can give a complete invariant on CCFs of zigzag-type.


1999 ◽  
Vol 08 (03) ◽  
pp. 321-352 ◽  
Author(s):  
DAVID A. KREBES

We consider the ways in which a 4-tangle T inside a unit cube can be extended outside the cube into a knot or link L. We present two links n(T) and d(T) such that the greatest common divisor of the determinants of these two links always divides the determinant of the link L. In order to prove this result we give a two-integer invariant of 4-tangles. Calculations are facilitated by viewing the determinant as the Kauffman bracket at a fourth root of -1, which sets the loop factor to zero. For rational tangles, our invariant coincides with the value of the associated continued fraction.


2017 ◽  
Vol 26 (12) ◽  
pp. 1750081
Author(s):  
Sang Youl Lee

In this paper, we introduce a notion of virtual marked graphs and their equivalence and then define polynomial invariants for virtual marked graphs using invariants for virtual links. We also formulate a way how to define the ideal coset invariants for virtual surface-links using the polynomial invariants for virtual marked graphs. Examining this theory with the Kauffman bracket polynomial, we establish a natural extension of the Kauffman bracket polynomial to virtual marked graphs and found the ideal coset invariant for virtual surface-links using the extended Kauffman bracket polynomial.


2018 ◽  
Vol 215 (2) ◽  
pp. 609-650 ◽  
Author(s):  
Charles Frohman ◽  
Joanna Kania-Bartoszynska ◽  
Thang Lê
Keyword(s):  

2014 ◽  
Vol 225 (1) ◽  
pp. 45-55 ◽  
Author(s):  
Jea-Pil Cho ◽  
Răzvan Gelca

2010 ◽  
Vol 19 (08) ◽  
pp. 1001-1023 ◽  
Author(s):  
XIAN'AN JIN ◽  
FUJI ZHANG

It is well known that Jones polynomial (hence, Kauffman bracket polynomial) of links is, in general, hard to compute. By now, Jones polynomials or Kauffman bracket polynomials of many link families have been computed, see [4, 7–11]. In recent years, the computer algebra (Maple) techniques were used to calculate link polynomials for various link families, see [7, 12–14]. In this paper, we try to design a maple program to calculate the explicit expression of the Kauffman bracket polynomial of Montesinos links. We first introduce a family of "ring of tangles" links, which includes Montesinos links as a special subfamily. Then, we provide a closed-form formula of Kauffman bracket polynomial for a "ring of tangles" link in terms of Kauffman bracket polynomials of the numerators and denominators of the tangles building the link. Finally, using this formula and known results on rational links, the Maple program is designed.


2020 ◽  
Vol 29 (02) ◽  
pp. 2040004 ◽  
Author(s):  
Denis P. Ilyutko ◽  
Vassily O. Manturov

In V. O. Manturov, On free knots, preprint (2009), arXiv:math.GT/0901.2214], the second named author constructed the bracket invariant [Formula: see text] of virtual knots valued in pictures (linear combinations of virtual knot diagrams with some crossing information omitted), such that for many diagrams [Formula: see text], the following formula holds: [Formula: see text], where [Formula: see text] is the underlying graph of the diagram, i.e. the value of the invariant on a diagram equals the diagram itself with some crossing information omitted. This phenomenon allows one to reduce many questions about virtual knots to questions about their diagrams. In [S. Nelson, M. E. Orrison and V. Rivera, Quantum enhancements and biquandle brackets, preprint (2015), arXiv:math.GT/1508.06573], the authors discovered the following phenomenon: having a biquandle coloring of a certain knot, one can enhance various state-sum invariants (say, Kauffman bracket) by using various coefficients depending on colors. Taking into account that the parity can be treated in terms of biquandles, we bring together the two ideas from these papers and construct the picture-valued parity-biquandle bracket for classical and virtual knots. This is an invariant of virtual knots valued in pictures. Both the parity bracket and Nelson–Orrison–Rivera invariants are partial cases of this invariant, hence this invariant enjoys many properties of various kinds. Recently, the authors together with E. Horvat and S. Kim have found that the picture-valued phenomenon works in the classical case.


2020 ◽  
Vol 8 ◽  
Author(s):  
SOPHIE MORIER-GENOUD ◽  
VALENTIN OVSIENKO

We introduce a notion of $q$ -deformed rational numbers and $q$ -deformed continued fractions. A $q$ -deformed rational is encoded by a triangulation of a polygon and can be computed recursively. The recursive formula is analogous to the $q$ -deformed Pascal identity for the Gaussian binomial coefficients, but the Pascal triangle is replaced by the Farey graph. The coefficients of the polynomials defining the $q$ -rational count quiver subrepresentations of the maximal indecomposable representation of the graph dual to the triangulation. Several other properties, such as total positivity properties, $q$ -deformation of the Farey graph, matrix presentations and $q$ -continuants are given, as well as a relation to the Jones polynomial of rational knots.


Sign in / Sign up

Export Citation Format

Share Document