scholarly journals Series expansion of the Gamma function and its reciprocal

2021 ◽  
Vol 27 (4) ◽  
pp. 104-115
Author(s):  
Ioana Petkova ◽  

In this paper we give representations for the coefficients of the Maclaurin series for \Gamma(z+1) and its reciprocal (where \Gamma is Euler’s Gamma function) with the help of a differential operator \mathfrak{D}, the exponential function and a linear functional ^{*} (in Theorem 3.1). As a result we obtain the following representations for \Gamma (in Theorem 3.2): \begin{align*} \Gamma(z+1) & = \big(e^{-u(x)}e^{-z\mathfrak{D}}[e^{u(x)}]\big)^{*}, \\ \big(\Gamma(z+1)\big)^{-1} & = \big(e^{u(x)}e^{-z\mathfrak{D}}[e^{-u(x)}]\big)^{*}. \end{align*} Theorem 3.1 and Theorem 3.2 are our main results. With the help of the first theorem we give our approach for finding the coefficients of Maclaurin series for \Gamma(z+1) and its reciprocal in an explicit form.

1986 ◽  
Vol 38 (6) ◽  
pp. 1329-1337 ◽  
Author(s):  
Richard J. Libera ◽  
Eligiusz J. Złotkiewicz

If f(z) is univalent (regular and one-to-one) in the open unit disk Δ, Δ = {z ∊ C:│z│ < 1}, and has a Maclaurin series expansion of the form(1.1)then, as de Branges has shown, │ak│ = k, for k = 2, 3, … and the Koebe function.(1.1)serves to show that these bounds are the best ones possible (see [3]). The functions defined above are generally said to constitute the class .


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Chuanqing Gu ◽  
Yong Liu

Tensor exponential function is an important function that is widely used. In this paper, tensor Pade´-type approximant (TPTA) is defined by introducing a generalized linear functional for the first time. The expression of TPTA is provided with the generating function form. Moreover, by means of formal orthogonal polynomials, we propose an efficient algorithm for computing TPTA. As an application, the TPTA for computing the tensor exponential function is presented. Numerical examples are given to demonstrate the efficiency of the proposed algorithm.


2012 ◽  
Vol 08 (02) ◽  
pp. 289-297 ◽  
Author(s):  
ZHI-GUO LIU

Using some properties of the gamma function and the well-known Gauss summation formula for the classical hypergeometric series, we prove a four-parameter series expansion formula, which can produce infinitely many Ramanujan-type series for 1/π.


Sign in / Sign up

Export Citation Format

Share Document