The Other Human Brain Imaging Methods

fMRI ◽  
2020 ◽  
2007 ◽  
Vol 33 (2-3) ◽  
pp. 319-340 ◽  
Author(s):  
Mark Pettit

Picture this: a party to a lawsuit proposes to show jurors images of a human brain to support its claim or defense. The other party objects, and the trial judge must make a ruling. What determines how the judge will rule? That is the question I attempt to address.I begin in Part II by describing very briefly some existing methods of brain imaging—how they work and what they try to do—and cataloging some possible uses of these methods in courtrooms. Part III discusses current legal standards of admissibility of scientific evidence under the Federal Rules of Evidence (FRE). Part IV examines the particular problem of scientific evidence offered to establish that a person was or was not telling the truth. Part V provides a brief history of some past attempts to introduce brain-imaging evidence into courtrooms. The article concludes with some general comments on the issues facing judges when parties to lawsuits offer brain-imaging evidence.


2015 ◽  
Vol 370 (1668) ◽  
pp. 20140170 ◽  
Author(s):  
Riitta Hari ◽  
Lauri Parkkonen

We discuss the importance of timing in brain function: how temporal dynamics of the world has left its traces in the brain during evolution and how we can monitor the dynamics of the human brain with non-invasive measurements. Accurate timing is important for the interplay of neurons, neuronal circuitries, brain areas and human individuals. In the human brain, multiple temporal integration windows are hierarchically organized, with temporal scales ranging from microseconds to tens and hundreds of milliseconds for perceptual, motor and cognitive functions, and up to minutes, hours and even months for hormonal and mood changes. Accurate timing is impaired in several brain diseases. From the current repertoire of non-invasive brain imaging methods, only magnetoencephalography (MEG) and scalp electroencephalography (EEG) provide millisecond time-resolution; our focus in this paper is on MEG. Since the introduction of high-density whole-scalp MEG/EEG coverage in the 1990s, the instrumentation has not changed drastically; yet, novel data analyses are advancing the field rapidly by shifting the focus from the mere pinpointing of activity hotspots to seeking stimulus- or task-specific information and to characterizing functional networks. During the next decades, we can expect increased spatial resolution and accuracy of the time-resolved brain imaging and better understanding of brain function, especially its temporal constraints, with the development of novel instrumentation and finer-grained, physiologically inspired generative models of local and network activity. Merging both spatial and temporal information with increasing accuracy and carrying out recordings in naturalistic conditions, including social interaction, will bring much new information about human brain function.


2011 ◽  
Vol 35 (4) ◽  
pp. 486-491 ◽  
Author(s):  
Na Rae Kim ◽  
Je G. Chi ◽  
Sang Han Choi ◽  
Young-Bo Kim ◽  
Hee Young Hwang ◽  
...  

2005 ◽  
Vol 5 (1) ◽  
pp. 42-46 ◽  
Author(s):  
Anne Lingford-Hughes

2019 ◽  
Vol 62 ◽  
pp. 191-198
Author(s):  
Zhi Yang ◽  
Beihan Zhao ◽  
Yong Pei ◽  
Bao Yang ◽  
Hanbing Lu

Sign in / Sign up

Export Citation Format

Share Document