Limits on the Possible Forms of Stone Tools: A Perspective from Convergent Biological Evolution

Author(s):  
David R. Braun ◽  
Vera Aldeias ◽  
Will Archer ◽  
J Ramon Arrowsmith ◽  
Niguss Baraki ◽  
...  

The manufacture of flaked stone artifacts represents a major milestone in the technology of the human lineage. Although the earliest production of primitive stone tools, predating the genus Homo and emphasizing percussive activities, has been reported at 3.3 million years ago (Ma) from Lomekwi, Kenya, the systematic production of sharp-edged stone tools is unknown before the 2.58–2.55 Ma Oldowan assemblages from Gona, Ethiopia. The organized production of Oldowan stone artifacts is part of a suite of characteristics that is often associated with the adaptive grade shift linked to the genus Homo. Recent discoveries from Ledi-Geraru (LG), Ethiopia, place the first occurrence of Homo ∼250 thousand years earlier than the Oldowan at Gona. Here, we describe a substantial assemblage of systematically flaked stone tools excavated in situ from a stratigraphically constrained context [Bokol Dora 1, (BD 1) hereafter] at LG bracketed between 2.61 and 2.58 Ma. Although perhaps more primitive in some respects, quantitative analysis suggests the BD 1 assemblage fits more closely with the variability previously described for the Oldowan than with the earlier Lomekwian or with stone tools produced by modern nonhuman primates. These differences suggest that hominin technology is distinctly different from generalized tool use that may be a shared feature of much of the primate lineage. The BD 1 assemblage, near the origin of our genus, provides a link between behavioral adaptations—in the form of flaked stone artifacts—and the biological evolution of our ancestors.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245595
Author(s):  
Flavia Venditti ◽  
Aviad Agam ◽  
Jacopo Tirillò ◽  
Stella Nunziante-Cesaro ◽  
Ran Barkai

Chopping tools/choppers provide one of the earliest and most persistent examples of stone tools produced and used by early humans. These artifacts appeared for the first time ~2.5 million years ago in Africa and are characteristic of the Oldowan and Acheulean cultural complexes throughout the Old World. Chopping tools were manufactured and used by early humans for more than two million years regardless of differences in geography, climate, resource availability, or major transformations in human cultural and biological evolution. Despite their widespread distribution through time and space in Africa and Eurasia, little attention has been paid to the function of these items, while scholars still debate whether they are tools or cores. In this paper, we wish to draw attention to these prominent and ubiquitous early lithic artifacts through the investigation of 53 chopping tools retrieved from a specific context at Late Acheulean Revadim (Israel). We combined typo-technological and functional studies with a residue analysis aimed at shedding light on their functional role within the tool-kits of the inhabitants of the site. Here we show that most of the chopping tools were used to chop hard and medium materials, such as bone, most probably for marrow extraction. A few of the tools were also used for cutting and scraping activities, while some also served as cores for further flake detachment. The chopping tools exhibit extraordinarily well-preserved bone residues suggesting they were used mainly for bone-breaking and marrow acquisition. We discuss the data and explore the tool versus core debate also in light of a sample of 50 flake cores made on pebbles/cobbles retrieved from the same archeological layer. The results add further pieces to the puzzle of activities carried out at Revadim and add to our knowledge of the production and use of these enigmatic tools and their role in human evolutionary history.


1997 ◽  
Vol 161 ◽  
pp. 419-429 ◽  
Author(s):  
Antonio Lazcano

AbstractDifferent current ideas on the origin of life are critically examined. Comparison of the now fashionable FeS/H2S pyrite-based autotrophic theory of the origin of life with the heterotrophic viewpoint suggest that the later is still the most fertile explanation for the emergence of life. However, the theory of chemical evolution and heterotrophic origins of life requires major updating, which should include the abandonment of the idea that the appearance of life was a slow process involving billions of years. Stability of organic compounds and the genetics of bacteria suggest that the origin and early diversification of life took place in a time period of the order of 10 million years. Current evidence suggest that the abiotic synthesis of organic compounds may be a widespread phenomenon in the Galaxy and may have a deterministic nature. However, the history of the biosphere does not exhibits any obvious trend towards greater complexity or «higher» forms of life. Therefore, the role of contingency in biological evolution should not be understimated in the discussions of the possibilities of life in the Universe.


1984 ◽  
Vol 143 (7) ◽  
pp. 429 ◽  
Author(s):  
M.V. Vol'kenshtein
Keyword(s):  

1983 ◽  
Vol 141 (11) ◽  
pp. 546 ◽  
Author(s):  
M.V. Vol'kenshtein
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document