Digital Simulation of Spiking Neural Networks

1999 ◽  
Vol 09 (05) ◽  
pp. 473-478 ◽  
Author(s):  
CYPRIAN GRASSMANN ◽  
JOACHIM K. ANLAUF

We present a simulation environment called SPIKELAB which incorporates a simulator that is able to simulate large networks of spiking neurons using a distributed event driven simulation. Contrary to a time driven simulation, which is usually used to simulate spiking neural networks, our simulation needs less computational resources because of the low average activity of typical networks. The paper addresses the speed up using an event driven versus a time driven simulation and how large networks can be simulated by a distribution of the simulation using already available computing resources. It also presents a solution for the integration of digital or analogue neuromorphic circuits into the simulation process.


2012 ◽  
Vol 35 (12) ◽  
pp. 2633 ◽  
Author(s):  
Xiang-Hong LIN ◽  
Tian-Wen ZHANG ◽  
Gui-Cang ZHANG

2020 ◽  
Vol 121 ◽  
pp. 88-100 ◽  
Author(s):  
Jesus L. Lobo ◽  
Javier Del Ser ◽  
Albert Bifet ◽  
Nikola Kasabov

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jonathan K. George ◽  
Cesare Soci ◽  
Mario Miscuglio ◽  
Volker J. Sorger

AbstractMirror symmetry is an abundant feature in both nature and technology. Its successful detection is critical for perception procedures based on visual stimuli and requires organizational processes. Neuromorphic computing, utilizing brain-mimicked networks, could be a technology-solution providing such perceptual organization functionality, and furthermore has made tremendous advances in computing efficiency by applying a spiking model of information. Spiking models inherently maximize efficiency in noisy environments by placing the energy of the signal in a minimal time. However, many neuromorphic computing models ignore time delay between nodes, choosing instead to approximate connections between neurons as instantaneous weighting. With this assumption, many complex time interactions of spiking neurons are lost. Here, we show that the coincidence detection property of a spiking-based feed-forward neural network enables mirror symmetry. Testing this algorithm exemplary on geospatial satellite image data sets reveals how symmetry density enables automated recognition of man-made structures over vegetation. We further demonstrate that the addition of noise improves feature detectability of an image through coincidence point generation. The ability to obtain mirror symmetry from spiking neural networks can be a powerful tool for applications in image-based rendering, computer graphics, robotics, photo interpretation, image retrieval, video analysis and annotation, multi-media and may help accelerating the brain-machine interconnection. More importantly it enables a technology pathway in bridging the gap between the low-level incoming sensor stimuli and high-level interpretation of these inputs as recognized objects and scenes in the world.


Sign in / Sign up

Export Citation Format

Share Document